
REST API User Guide
Privitar Data Security Platform, version 1.3.0

Publication date September 6, 2023

Privitar Data Security Platform, version 1.3.0

© Copyright Informatica LLC 2016, 2023

This software and documentation are provided only under a separate license agreement containing restrictions on use
and disclosure. No part of this document may be reproduced or transmitted in any form, by any means (electronic,
photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure,
modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government
contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License.

Informatica, Informatica Cloud, Informatica Intelligent Cloud Services, PowerCenter, PowerExchange, and the Informatica
logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout
the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html.
Other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices
are included with the product.

The information in this documentation is subject to change without notice. If you find any problems in this documentation,
report them to us at infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are
provided. INFORMATICA PROVIDES THE INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

https://www.informatica.com/trademarks.html
mailto:infa_documentation@informatica.com

Table of Contents
1. Welcome to the DSP Platform REST API User Guide . 4
2. Introduction to the Platform REST APIs . 5

2.1. The Platform REST APIs . 5
2.1.1. Business Information APIs . 6
2.1.2. Data Exchange APIs . 7
2.1.3. Policy APIs . 8
2.1.4. Project APIs . 10
2.1.5. Task APIs . 11
2.1.6. User and User Group APIs . 11

2.2. REST API Functions . 11
2.3. Submitting REST API Requests . 12

3. Use Swagger UI to Explore and Learn . 13
4. Tools for REST APIs . 15

4.1. About cURL . 15
5. Authorization . 16
6. HTTP Status Codes and Error Handling . 17
7. Glossary of Data Security Terminology . 18

REST API User Guide

Page 3 of 26

1. Welcome to the DSP Platform REST API User
Guide
Welcome to the DSP Platform REST API User Guide. If you are reading this document, you
are likely to be a skilled developer. You may simply want to know the REST API host URL in
order to use Swagger, or how to create a token for authorization. That information is here.

If you are not an API developer, but you are interested in exploring the platform REST APIs,
you may first want to read more about how Swagger UI works. This tutorial is written from
the perspective of those documenting APIs, but it is also a description that offers a better
understanding of Swagger UI for any casual user.

REST API User Guide

Page 4 of 26

https://idratherbewriting.com/learnapidoc/pubapis_swagger.html

2. Introduction to the Platform REST APIs
The Privitar Data Security Platform uses Representational State Transfer (REST) APIs to
manage assets.

The APIs use Hypertext Transfer Protocol Secure (HTTPS) to perform Create, Retrieve,
Update, and Delete (CRUD) operations through the following methods:

• POST (Create)

• GET (Retrieve)

• PUT (Update)

• DELETE

2.1. The Platform REST APIs
To see all endpoints and methods, use Swagger. Go to:

https://<your_DSP_environment_url>/api/v1/api-docs/swagger-ui.html

The address of each API endpoint is:

https://<your_DSP_environment_url>/api/v1/<ENDPOINT>

For example, the Terms API endpoint is, https://
<your_DSP_environment_url>/api/v1/terms

There are platform APIs for:

Business Information

• Attributes

• Data Classes

• Tags

• Terms

Data Exchange

• Assets

• Connections

• Data Planes

• Datasets

• Fields

Policies

• Access Control Policies

• Access Control Policy Rules

• Transformations

REST API User Guide

Page 5 of 26

• Transformation Policies

• Transformation Policy Rules

Projects

• Projects

Tasks

• Tasks

Users and User Groups

• Users

• User Groups

2.1.1. Business Information APIs

Note

You may not remove system attribute types, but you may change their list of
valid values.

Table 1. Attribute Endpoints

Endpoint Description

GET/api/v1/attributes/{id} Retrieve details of an attribute type (such as a
purpose).

PUT/api/v1/attributes/{id} Modify an attribute type and its list of valid values.

DELETE/api/v1/attributes/{id} Delete an attribute type.

GET/api/v1/attributes Retrieve a list of all attribute types.

POST/api/v1/attributes Create a new attribute type.

Table 2. Data Class Endpoints

Endpoint Description

GET/api/v1/data-classes/{id} Retrieve details of a data class.

PUT/api/v1/data-classes/{id} Modify a data class.

DELETE/api/v1/data-classes/{id} Delete a data class.

GET/api/v1/data-classes/{id}/
associated-terms

Retrieve a list of associated terms for a data
class.

PUT/api/v1/data-classes/{id}/
associated-terms

Update the list of associated terms for a
data class.

GET/api/v1/data-classes Retrieve a list of all data classes.

POST/api/v1/data-classes Create a new data class.

REST API User Guide

Page 6 of 26

Table 3. Tag Endpoints

Endpoint Description

GET/api/v1/project-tasks/{id} Retrieve details of a project approval task.

PUT/api/v1/project-tasks/{id} Approve or reject project tasks.

GET/api/v1/policy-tasks/{id} Retrieve details of a policy approval task.

PUT/api/v1/policy-tasks/{id} Approve or reject policy tasks.

GET/api/v1/asset-tasks/{id} Retrieve details of an asset approval task.

PUT/api/v1/asset-tasks/{id} Approve or reject asset tasks.

GET/api/v1/project-tasks Retrieve a list of all project tasks.

GET/api/v1/policy-tasks Retrieve a list of all policy tasks.

GET/api/v1/asset-tasks Retrieve a list of all asset tasks.

Table 4. Term Endpoints

Endpoint Description

GET/api/v1/terms/{id} Retrieve details of a term.

PUT/api/v1/terms/{id} Modify a term.

DELETE/api/v1/terms/{id} Delete a term.

GET/api/v1/terms/{id}/associated-
terms

Retrieve a list of associated terms for a term.

PUT/api/v1/terms/{id}/associated-
terms

Update the list of associated terms for a
term.

GET/api/v1/terms/{id}/associated-
data-classes

Retrieve a list of associated data classes for a
term.

PUT/api/v1/terms/{id}/associated-
data-classes

Update the list of associated classes for a
term.

GET/api/v1/terms Retrieve a list of all terms.

POST/api/v1/terms Create a new term.

2.1.2. Data Exchange APIs

Table 5. Asset Endpoints

Endpoint Description

GET/api/v1/datasets/{datasetId}/
assets/{id}

Retrieve details of an asset.

PUT/api/v1/datasets/{datasetId}/
assets/{id}

Modify an asset.

DELETE/api/v1/datasets/{datasetId}/
assets/{id}

Delete a published asset or discard a
draft asset.

PUT/api/v1/datasets/{datasetId}/
assets/{id}/register

Submit the asset for review.

GET/api/v1/datasets/{datasetId}/
assets

Retrieve a list of all assets within a
dataset.

REST API User Guide

Page 7 of 26

Endpoint Description

POST/api/v1/datasets/{datasetId}/
assets

Create a new draft asset.

Table 6. Connection Endpoints

Endpoint Description

GET/api/v1/connections/{id} Retrieve details of a connection.

PUT/api/v1/connections/{id} Modify a connection.

DELETE/api/v1/connections/{id} Delete a connection.

GET/api/v1/connections Retrieve a list of all connections.

POST/api/v1/connections Create a new connection.

Table 7. Data Plane Endpoints

Endpoint Description

GET/api/v1/data-planes Retrieve a list of data planes.

GET/api/v1/data-planes/{id} Retrieve details of a data plane.

Table 8. Dataset Endpoints

Endpoint Description

GET/api/v1/datasets/{id} Retrieve details of a dataset.

PUT/api/v1/datasets/{id} Modify a dataset.

DELETE/api/v1/datasets/{id} Delete a dataset.

GET/api/v1/datasets Retrieve a list of all datasets.

POST/api/v1/datasets Create a new dataset.

Table 9. Field Endpoints

Endpoint Description

GET/api/v1/datasets/{datasetId}/
assets/{assetId}/fields/{id}

Retrieve details of a field from within an
asset.

PUT/api/v1/datasets/{datasetId}/
assets/{assetId}/fields/{id}

Modify a field.

GET/api/v1/datasets/{datasetId}/
assets/{assetId}/fields

Retrieve a list of all fields from within an
asset.

2.1.3. Policy APIs

Table 10. Access Control Policy Endpoints

Endpoint Description

GET/api/v1/access-control-
policies/{id}

Retrieve the details of an access control
policy.

REST API User Guide

Page 8 of 26

Endpoint Description

PUT/api/v1/access-control-
policies/{id}

Modify an access control policy.

DELETE/api/v1/access-control-
policies/{id}

Delete an access control policy.

PUT/api/v1/access-control-
policies/{id}/review-task

Submit an access control policy for review.

GET/api/v1/access-control-policies Retrieve a list of all access control policies.

POST/api/v1/access-control-
policies

Create a new draft of an access control
policy.

GET/api/v1/access-control-
policies/{id}/review-response

Retrieve the rejection message for a rejected
access control policy.

DELETE/api/v1/access-control-
policies/{id}/review-response

Discard a rejected draft of an access control
policy.

Table 11. Access Control Policy Rule Endpoints

Endpoint Description

GET/api/v1/access-control-policies/
{policyId}/rules/{id}

Retrieve the details of an access control
rule.

PUT/api/v1/access-control-policies/
{policyId}/rules/{id}

Modify an access control rule.

DELETE/api/v1/access-control-
policies/{policyId}/rules/{id}

Delete an access control rule.

GET/api/v1/access-control-policies/
{policyId}/rules

Retrieve a list of all access control rules
from within an access control policy.

POST/api/v1/access-control-policies/
{policyId}/rules

Create a new draft of an access control
rule.

Table 12. Transformation Endpoints

Endpoint Description

GET/api/v1/transformations/{id} Retrieve the details of a transformation.

PUT/api/v1/transformations/{id} Modify a transformation.

DELETE/api/v1/transformations/{id} Delete a transformation.

GET/api/v1/transformations Retrieve a list of all transformations.

POST/api/v1/transformations Create a new transformation.

Table 13. Transformation Policy Endpoints

Endpoint Description

GET/api/v1/transformation-policies/
{id}

Retrieve the details of a transformation
policy.

PUT/api/v1/transformation-policies/
{id}

Modify a transformation policy.

DELETE/api/v1/transformation-
policies/{id}

Delete a transformation policy.

REST API User Guide

Page 9 of 26

Endpoint Description

PUT/api/v1/transformation-policies/
{id}/review-task

Submit a transformation policy for
approval.

GET/api/v1/transformation-policies Retrieve a list of all transformation policies.

POST/api/v1/transformation-policies Create a new draft transformation policy.

GET/api/v1/transformation-policies/
{id}/review-response

Retrieve the rejection message for a
rejected transformation policy.

DELETE/api/v1/transformation-
policies/{id}/review-response

Discard a rejected draft of a
transformation policy.

Table 14. Transformation Policy Rule Endpoints

Endpoint Description

GET/api/v1/transformation-policies/
{policyId}/rules

Retrieve the details of a transformation
policy rule.

PUT/api/v1/transformation-policies/
{policyId}/rules

Modify the order of transformation policy
rules.

POST/api/v1/transformation-policies/
{policyId}/rules

Create a new draft of a transformation
policy rule.

GET/api/v1/transformation-policies/
{policyId}/rules/{id}

Retrieve a list of all transformation policy
rules from within a transformation policy.

PUT/api/v1/transformation-policies/
{policyId}/rules/{id}

Modify a transformation policy rule.

DELETE/api/v1/transformation-
policies/{policyId}/rules/{id}

Delete a transformation policy rule.

2.1.4. Project APIs

Table 15. Project Endpoints

Endpoint Description

GET/api/v1/projects/{id} Retrieve the details of a project.

PUT/api/v1/projects/{id} Modify a project.

DELETE/api/v1/projects/{id} Delete a project.

PUT/api/v1/projects/{id}/review-
task

Submit the project for review.

PUT/api/v1/projects/{id}/assets Update and replace the assets associated
with a project.

GET/api/v1/projects Retrieve a list of all projects.

POST/api/v1/projects Create a new draft project.

GET/api/v1/projects/{id}/proxyurls Retrieve the proxy URLs of a project.

REST API User Guide

Page 10 of 26

2.1.5. Task APIs

Table 16. Task Endpoints

Endpoint Description

GET/api/v1/project-tasks/{id} Retrieve the details of a project approval task.

PUT/api/v1/project-tasks/{id} Approve or reject project tasks.

GET/api/v1/policy-tasks/{id} Retrieve details of a policy approval task.

PUT/api/v1/policy-tasks/{id} Approve or reject policy tasks.

GET/api/v1/asset-tasks/{id} Retrieve details of an asset approval task.

PUT/api/v1/asset-tasks/{id} Approve or reject asset tasks.

GET/api/v1/project-tasks Retrieve a list of all project tasks.

GET/api/v1/policy-tasks Retrieve a list of all policy tasks.

GET/api/v1/asset-tasks Retrieve a list of all asset tasks.

2.1.6. User and User Group APIs

Table 17. User and User Group Endpoints

Endpoint Description

GET/api/v1/users Retrieve a list of all users.

GET/api/v1/users/{id} Retrieve the details of a specific user.

GET/api/v1/users/{id}/user-
groups

Retrieve a list of all user groups of which a specific
user is a member.

GET/api/v1/user-groups Retrieve a list of all user groups.

GET/api/v1/user-groups/{id} Retrieve the details of a specific user group.

2.2. REST API Functions
The REST APIs encrypt requests and data and provide responses using Transport Layer
Security (TLS).

The combination of HTTPS method and API URL is referred to as an "endpoint." Each REST
API endpoint is documented in Swagger, and is characterized as follows:

• It is "stateless"—that is to say, no context is stored, and each client needs to provide all
the necessary information to service each request.

• It is "cache-able"—that is to say, the client's intermediary can store the responses for
subsequent retrieval.

• It uses a uniform interface—all responses are provided in JavaScript Object Notation
(JSON) format.

REST API User Guide

Page 11 of 26

Note
JSON is a convenient format for representing REST resources because it is
human-readable, easily compressed, and all modern programming languages
support it. It is also easy to understand because it only has a few data types
(String, Number, Boolean, Null, Object, and Array).

2.3. Submitting REST API Requests
To try out REST API calls from the Privitar Data Security Platform REST API documentation,
go to:

https://<your_DSP_environment_url>/api/v1/api-docs/swagger-ui.html

To call a REST API on the platform, you send a request to the server, incorporating all
the information required to tell the server what you want it to do. This must include the
following:

• the relevant REST API method

• the URL

• the request parameters, including:

• the bearer token that represents the authorization details

• for PUT and DELETE endpoints, the object (term, data class, and so on) ID

• the exchange ID

To obtain the exchange ID:

1. Log in to the platform.

2. Click Data Exchange in the left navigation.

3. Click the avatar symbol in the top right corner of the page, and select View
Exchange.

4. Data Exchange ID—Select and copy the data exchange ID.

When the server finishes the call, it sends a response back to you, letting you know
whether or not the operation was successful. In the event of a successful call, the
response includes the data that you requested in the body section. The header section
contains metadata about the response.

REST API User Guide

Page 12 of 26

3. Use Swagger UI to Explore and Learn
Swagger UI provides a display framework that reads an OpenAPI specification document
and uses it to generate an interactive API console. This console allows you to quickly learn
about the associated API and experiment with it by sending requests and viewing the
responses generated by the requests.

To explore the endpoints of the APIs in Swagger UI, open a browser and enter the following
URL, replacing YOUR_HOSTNAME with your host server name:

https://<YOUR_HOSTNAME>/api/v1/api-docs/swagger-ui.html

Press Enter.

The Privitar Open API landing page appears in Swagger UI. It displays a list of all available
REST API endpoints.

Swagger UI effectively renders OpenAPI specs as interactive API documentation. All
endpoints display here in one consolidated view. What you see here is everything that
is currently available.

To interact with an endpoint method, you must first authorize access to the API with
a bearer token. The platform APIs use JSON Web Tokens (JWT) for authorization. Click
Authorize, and enter the JWT. The token is not used until a REST action is performed on
an API.

Click an endpoint to expand the details and try it out. For each endpoint, you’ll see the
possible errors in the Responses section.

To open the schema definition for all supported API endpoints, click the /api/v1/api-
docs link at the top of the page.

REST API User Guide

Page 13 of 26

https://github.com/swagger-api/swagger-ui
https://github.com/OAI/OpenAPI-Specification
https://swagger.io/docs/specification/authentication/bearer-authentication/

The schema is a document that’s generated from the Open API specification. It gives a
useful shape to the API, and is an additional quick reference guide where you can see all
the endpoints and their parameters. It shows how requests and responses are formatted
and the types of error or success responses to expect.

REST API User Guide

Page 14 of 26

4. Tools for REST APIs
When you explore and test API endpoints, you will use one of the many graphical user
interface (GUI) REST clients available to make API requests. You will also use a command-
line interface, like cURL for some tasks too.

Swagger UI is used to explore and learn about APIs using the OpenAPI specification. Many
developers also use Postman for testing and development, but there are plenty of choices
out there that will work with the platform REST APIs.

4.1. About cURL
Client Uniform Resource Locator (cURL) is a command-line tool that developers use to
transfer data to and from a server. At its most fundamental, cURL allows you to talk to
a server by specifying the location (in the form of a URL) and the data that you want to
send. cURL supports several different protocols, including HTTP and HTTPS and runs on
almost every platform. This makes cURL ideal for testing REST API calls from almost any
device (provided that the device has a command line and network connectivity).

To run a cURL command, specify curl followed by the URL from which you wish to retrieve
data, for example:

curl https://<YOUR_HOSTNAME>.com/api/v1/attributes

REST API User Guide

Page 15 of 26

https://swagger.io/tools/swagger-ui/
https://www.getpostman.com/

5. Authorization
Authorize REST actions on the API by passing a bearer authentication token into the
header. The host server must first generate and return this JSON Web Token (JWT) to you
by the host server in the following way.

Issue a POST request to the /graph/enterprise-management/v1/registration/
login endpoint. To do this locally, open a terminal and use this cURL command:

curl --data '{"username": "YOUR USERNAME","password": "YOUR PASSWORD"}' \
--header "accept:*/*" \
--header "content-type:application/json" -k \
--url "https://<your_DSP_environment_url>/graph/enterprise-management/v1/
registration/login"

Replace YOUR USERNAME and YOUR PASSWORD with your platform username and
password. Replace <your_DSP_environment_URL> with the URL of your host server.

Press Enter.

If successful, the response text is your JWT. Note that if you execute the command from
a zsh shell, your terminal will append a % symbol at the end (to let you know that there
was no new line). When you copy the JWT, don't include that symbol.

You can now use the bearer token in Swagger, Postman, and other requests to the platform
APIs.

REST API User Guide

Page 16 of 26

https://swagger.io/docs/specification/authentication/bearer-authentication/

6. HTTP Status Codes and Error Handling
The platform APIs use HTTP status codes to convey the results of a client request. There
are the following standard status code categories, though not all are currently in use on
the platform:

• 1xx: Informational—Communicates transfer protocol-level information.

• 2xx: Success—The client’s request was accepted successfully. For example:

• a successful PUT (update) request for a data class on the platform will return a 200
code, and the response will show the contents of the updated object.

• a successful POST (create) will return a 201 code, and the response will show the
contents of the created object.

• 3xx: Redirection—The client must take additional action in order to complete the
request.

• 4xx: Client Error—This type of error status code indicates a client error. For
example, an unsuccessful request on the platform may return a 400 status code: "Bad
Request due to an invalid format or because the requested name is
already in use".

• 5xx: Server Error—This type of error status code indicates a server error.

If an API call is not successful, for example if the server is unable to generate a 200 OK or
201 CREATED response, then the server will return the appropriate standard error code in
a set format.

In Swagger, click the arrow symbol on any endpoint to see example status codes in the
Responses section.

You can also view every status code in use in the schema. To open the schema,
click /api/v1/api-docs just below the title on the Swagger page.

REST API User Guide

Page 17 of 26

7. Glossary of Data Security Terminology
This glossary defines terms that relate to the Privitar Data Security Platform.

A

access control policy An access control policy is a reusable set of access control
rules that serves a business context. An access control policy
is a flexible construct that allows you to apply access control
rules according to desired conditions. For example, you can
write access control policies to define rules that examine and
drop rows (records) according to the business condition and
the actual data in those records.

access control rule Access control rules act on the field level. Access control
rules examine the actual data and discard each record being
queried (requested) according to the rule’s conditions.

access request See project request.

asset Assets are data structures; for example the tables in an
Oracle® or PostgreSQL database.

asset registration
request

An asset registration request is an inquiry made by a data
owner to add a data asset (a database table, for example) to a
dataset. A data guardian approves or denies asset registration
requests.

attribute-based access
control (ABAC)

Attribute-based access controls (ABACs) are conditional
policies and rules that regulate how users’ access fields or
rows, based on specific attributes, such as location, terms,
and tags.

ABACs determine how the platform applies policies and
rules. In contrast, field-level access controls and record-level
access controls determine where (on which assets, rows, or
fields) the platform applies the policies and rules.

B

business information Business information provides definition, structure, and clarity
to data assets, projects, policies, and rules by representing
the context and semantics of an organization.

Business information includes data classes, tags, terms, and
purpose.

Business information assists users to find and understand
content on the platform and guides when to apply
transformations based on attributes and conditions.

REST API User Guide

Page 18 of 26

C

cell-level transformation Cell-level transformations allow you to select a different
transformation for each distinct record of a specified field
(column), that is, a cell, based on varying (logical) conditions.

For example, you can instruct the platform to apply different
transformations to an identity number or postal code in a
given record based on the value of country of residence in a
specific cell.

connection A connection is a configuration for connecting to and reading
data from a data source, such as a JDBC connection
string. The platform uses this connection information to read
metadata attributes from a data asset, to read the data itself,
and to write the processed data to the target location.

control plane The control plane is a logical perimeter that does not have
direct access to data but may host components that drive
operations in the data plane.

The control plane is where policies, rules, projects, and assets
are created and managed.

The architectural split between the control plane and
the data plane allows for configuration, orchestration, and
administration (control) without the need to access data,
but the ability to process data close to the source within a
given jurisdiction. The control plane allows for this by using
metadata, data classes, and other representations of the
data.

D

data agent The data agent provides access to the data plane whenever
required by the control plane, for example to retrieve the
schema for a data asset. It makes a long-lived connection to
the data bridge on startup.

data bridge The data bridge is the component in the control plane that
handles communication with the data plane. It acts as a
Google Remote Procedure Call (gRPC) server. It is replicated,
and it sits behind an ingress with a load-balancer.

data class (class) A data class is a categorization that data owners apply to
fields within data assets to indicate the category of data.
Within the Privitar Data Security Platform, data owners can
apply a data class to identify the data's category and ensure
that that kind of data is classified consistently throughout
your organization. For example, data classes can classify birth
dates, national identifiers, and postal codes.

REST API User Guide

Page 19 of 26

https://grpc.io/
https://collabnix.github.io/kubelabs/Ingress101/

data consumer
(consumer)

Data consumers are users on the Privitar Data Security
Platform who request and consume data from the platform.
Data consumers require direct access to data as part of their
job responsibilities.

data exchange
(exchange)

A data exchange is a secure online portal where data owners
can classify sensitive datasets, and data consumers can
access them, without compromising data safety.

Each data exchange is separate and different from other data
exchanges, being a discrete entity within an enterprise.

data guardian (guardian) Data guardians are users on the Privitar Data Security
Platform who develop and maintain company policies and
rules that govern data usage, including how the organization
adheres to regulatory and compliance guidelines and
requirements.

Data guardians are responsible for approving all data
requests, including requests to register data on the platform
and requests to access data outside the platform.

data owner (owner) Data owners are users on the Privitar Data Security Platform
who register and classify data on the platform. Data owners
understand where the data comes from, its quality, its
meaning, and for what purposes it can be used.

data plane A data plane is a set of services used for the reading, writing,
and processing of data. It contains a data agent and services
capable of provisioning data, such as a data proxy or an
integration using the Privitar SDK.

data proxy (proxy) The data proxy is a Java Database Connectivity proxy (JDBC
proxy) that allows data consumers to access sensitive data to
which de-identification policies have been applied. It makes
calls to the data bridge to fetch the information it needs, for
example the details of how to connect to the sensitive data
and the policies to be applied.

dataset A dataset is a logical container of assets that is also known
as a "data product." Its purpose is to group and facilitate
an easier search experience. Data owners make datasets
available to data consumers.

data type (type) A data type is the data's categorization that is read from the
source. Examples include: integer and string. The data type
references how data is stored in a database, and each data
type can have a different corresponding transformation. For
example, you can store a person’s age as an integer or a
string.

REST API User Guide

Page 20 of 26

https://docs.oracle.com/cd/E11882_01/java.112/e16548/proxya.htm#JJDBC28352
https://docs.oracle.com/cd/E11882_01/java.112/e16548/proxya.htm#JJDBC28352

E

encryption Encryption is the act of using a cryptographic algorithm to
derive a value that is applied to a value in a dataset in such
a way that only authorized parties can access the original
value. In an encryption scheme, the original value, referred to
as plaintext, is encrypted using an encryption algorithm to
generate ciphertext that authorized parties can only read if it
is decrypted. Encryption can be used as a de-identification
technique.

It is good practice to encrypt data at rest and in
transit. However, while encryption can help protect against
unauthorized access, it does not protect the privacy of
individuals’ data when it’s used by people who are authorized.
This is known as an insider attack.

enterprise administrator
(enterprise admin)

Enterprise administrators are users who perform operations
within the Privitar Data Security Platform, such as creating a
data exchange, creating a data plane, and configuring a data
plane.

exchange See data exchange.

exchange administrator
(exchange admin)

Exchange administrators are users who perform tasks within
a data exchange, such as creating and editing a data
plane, managing users and groups, and performing everyday
administration tasks.

F

field-level access
control

Field-level access controls are conditional policies and rules
that regulate users’ ability to access individual fields of a data
asset. Field-level access controls determine which fields of
the original dataset the platform retrieves prior to applying
data transformation rules. Field-level access controls are
implemented through drop field transformation, conditioned
on attributes (ABAC), data consumer roles (RBAC), or purpose
(PBAC).

Field-level access controls determine where (on which fields)
the platform applies policies and rules.

field-level
transformation

Field-level transformations apply the same transformation to
the entire field (column).

The platform determines whether to apply a field-level
transformation based on the data class of the column.

REST API User Guide

Page 21 of 26

H

HashiCorp® Vault Key
Management System
(HashiCorp® Vault KMS)

The HashiCorp® Vault KMS is a key management system
(KMS) used to create and control encryption keys, which you
use to encrypt data. A KMS is a system for the management
(generation, distribution, storage, and more) of cryptographic
keys and their metadata.

K

key format The Privitar Data Security Platform uses "asymmetric" (or
public key) encryption, which uses a pair of distinct, yet
related keys. One key (the public key) is used for encryption,
while the other in the pair (the private key) is used for
decryption by an authenticated recipient (user).

L

linkability "Linkability" is the probability of inferring the original value of
transformed data by linking values from different datasets.
Applying different tokens to the same value in different
datasets reduces the ability to re-identify or de-anonymize
data.

P

policy A policy is a reusable set of rules that serves a business
context. Users of the platform can utilize the following types
of policies:

• access control policies

• transformation policies

privacy enhancing
technology (PET)

A privacy enhancing technology is a transformation type used
to modify raw data to remove sensitive data elements. The
Privitar Data Security Platform offers many PETs. These are
the transformation types that data guardians select when
building policies.

Privitar NOVLT Privitar NOVLT is a feature of the Privitar Data Security
Platform that applies consistent tokenization without a token
vault. NOVLT allows for data linkability across regions. NOVLT
also offers faster throughput and less latency than most
vaulted solutions.

Privitar Query Engine The Privitar Query Engine retrieves relevant policies and
applies them to assets. The Query Engine transforms SQL
queries, and the data retrieved with them, in compliance with
the applicable policies.

REST API User Guide

Page 22 of 26

project A project is a collection of data assets that a team of data
consumers wishes to provision safely. While data owners
manage the data assets themselves, data consumers manage
projects, including linkability between assets. However, data
consumers will not have access to the data within a project
until a data guardian approves their access.

project request
(request)

A project request is an inquiry made by a data consumer to
use the assets in a data project. A data guardian approves or
denies project requests.

provision Provisioning is the act of making data available in a secure
way to users and applications.

purpose A purpose is the data consumer’s intended use for the data in
a project. Data guardians use purposes as attributes in rules.
Examples might include, “to find sources of bad loans” or “to
build customer 360 profiles."

purpose-based access
control (PBAC)

Purpose-based access controls (PBACs) are conditional
policies and rules that regulate how users’ access fields, rows,
or entire data assets, based on a project purpose selected by
a data consumer.

PBACs determine how the platform applies policies and rules.
In contrast, field-level access controls, and RLACs determine
where (on which fields, rows, or assets) the platform applies
policies and rules.

R

record-level access
control (RLAC)

Record-level access controls (RLACs) are conditional policies
and rules that regulate users’ ability to access individual
records of an asset based on the values of selected
fields of the same record. Record-level access controls
determine which records of the original dataset the platform
retrieves prior to applying transformation rules. Unlike data
transformation rules, which are based solely on metadata,
record-level access control rules are based on a combination
of the data itself and metadata.

Record-level access controls (RLACs) determine where (on
which records) the platform applies policies and rules.
Attribute-based access controls (ABACs), purpose-based
access controls (PBACs), and role-based access controls
(RBACs) determine how the platform applies those policies
and rules.

region 1. In the Privitar Data Security Platform, a region is a name
for the geographical location, such as the location of
a data exchange or a data agent. This is closely tied

REST API User Guide

Page 23 of 26

to jurisdiction. Some regulations require that data must
remain within certain jurisdictions.

2. In cloud computing a region, (aka “geography”), is a
named set of cloud resources in the same geographical
area. A region is comprised of availability zones.

regular expression
(regex)

A regular expression is a series of characters that specifies a
pattern to match text and numeric data formats. The Privitar
Data Security Platform uses regular expressions to replace
text strings and numbers with random characters.

For example, for an initial value of abcdef, you could use the
following regular expression [a-z]{6} to produce an output
such as mvskyc.

request See project request and asset registration request.

role-based access
control (RBAC)

Role-based access controls (RBACs) are conditional policies
and rules that regulate how users access fields or rows, based
on specific roles provided as user groups.

RBACs determine how the platform applies policies and
rules. In contrast, field-level access controls, and record-level
access controls determine where (on which fields, rows, or
assets) the platform applies policies and rules.

rule Rules are building blocks of policies. Rules are conditional
based on attributes, such as user groups, terms, tags,
locations, and so on. Rules also take actions specific to data
classes and transformations.

Users of the platform can utilize the following types of rules:

• access control rules

• transformation rules

S

source connection A source connection is from where a data owner reads data.

system administrator
(SysAdmin)

System administrators are users who perform activities
to install and set up the Privitar Data Security Platform.
Most of these activities are external to the platform, such
as deploying the platform, managing secrets required for
installation, performing backup and restore activities, and
performing updates to the platform.

T

tag A tag is a keyword that you can define to describe objects,
such as when you want to group objects together or add

REST API User Guide

Page 24 of 26

context to those objects. For example, you might want to
define tags that correspond to geography, line of business,
project names, or applications. Tags help facilitate search and
filtering.

target connection A target connection is to where a data consumer provisions
data.

term Terms are words used within your organization to describe
business concepts in plain language. Adding them to the
platform ensures consistent use of those words throughout
your organization. Terms also lend meaning to physical assets
and their fields and give them context. When data consumers
are browsing assets, terms allow them to understand the
business meaning and semantics of the physical asset.
Examples of terms could be “account type,” “customer level,”
or “credit risk rating.”

tokenization Tokenization is a form of fine-grained data protection that
replaces a clear value with a randomly generated synthetic
value that stands in for the original as a "token." The
pattern for the tokenized value is configurable and can retain
the same format as the original, which means fewer down-
stream application changes, enhanced data sharing, and more
meaningful testing and development with the protected data.

token vault A token vault is a secure database (for example, PostgreSQL
or Amazon DynamoDB) where you can store tokens generated
during the de-identification of a dataset. Token vaults are
only used for consistent tokenization (always returning the
same token for the input value). Each token in a token vault
is unique. That is, each token is only returned for one value.
Token vaults allow for re-identification. That is, you are able
to take a token from a de-identified dataset and look up the
original input value.

transformation A transformation defines a set of behaviors (privacy
enhancing technologies) for the platform to execute on a field
in a dataset to de-identify it, while still preserving data utility.

transformation policy A transformation policy is a reusable set of transformation
rules that serves a business context. A transformation policy
is a flexible construct that allows you to apply transformation
rules in the way that best meets your needs. For example,
you can write a policy around a regulation (such as HIPAA
or GDPR) or around a business context (such as provisioning
data for marketing analytics).

The order of transformation policies matters. The platform
applies them in the order that they are arranged by the data
guardian.

REST API User Guide

Page 25 of 26

transformation rule Transformation rules are conditional based on attributes, such
as user group, terms, tags, location, and so on. Transformation
rules apply pre-defined transformations to data classes.

W

watermark A watermark is a unique digital pattern created by the
Privitar platform that is added into the records of de-
identified datasets for traceability reasons. The platform
adds watermarks to the data during the process of de-
identification. They are invisibly embedded and distributed
throughout the data, and as a result are robust against
tampering and operations, such as filtering or reorganizing of
the data.

In the event of a leak or data breach, watermarks can be
used to identify the data and plug potential security holes
faster. Watermarks can also act as a deterrent to anyone
handling the data, encouraging them to take the security of
the dataset seriously when they know that the data can be
traced.

REST API User Guide

Page 26 of 26

	REST API User Guide
	Table of Contents
	1. Welcome to the DSP Platform REST API User Guide
	2. Introduction to the Platform REST APIs
	2.1. The Platform REST APIs
	2.1.1. Business Information APIs
	2.1.2. Data Exchange APIs
	2.1.3. Policy APIs
	2.1.4. Project APIs
	2.1.5. Task APIs
	2.1.6. User and User Group APIs

	2.2. REST API Functions
	2.3. Submitting REST API Requests

	3. Use Swagger UI to Explore and Learn
	4. Tools for REST APIs
	4.1. About cURL

	5. Authorization
	6. HTTP Status Codes and Error Handling
	7. Glossary of Data Security Terminology

