
Kafka Connect
Reference Guide

Publication date : June 4, 2021

All rights reserved.

Table of Contents
1. Introduction ... 4

1.1. Compatibility ... 4
1.2. Deployment .. 4

2. Architecture .. 5
3. Installation .. 6

3.1. Pre-requisites .. 6
3.2. Installation procedure .. 6
3.3. Create a folder .. 6
3.4. Add the plug-in ... 6
3.5. Add Token Vault drivers ... 6
3.6. Restart Worker nodes .. 7

4. Configuring users .. 8
4.1. Creating an API user to run Data Flow jobs ... 8
4.2. Masking Jobs ... 9
4.3. UnMasking Jobs ... 10

5. Configuration using the REST API .. 12
6. Configuration using Confluent Control Center .. 14
7. Configuration Options .. 17

7.1. Privitar platform .. 17
7.2. Connector converters ... 18
7.3. Processing Guarantee ... 18
7.4. Error Handling ... 18
7.5. Advanced Connector Settings .. 19
7.6. Advanced Privitar Platform Settings .. 20

8. Configuration Examples ... 21
9. Supported Data Types .. 23

9.1. Converters .. 23
9.2. Data Types .. 23

10. Connecting with Kerberos ... 25
10.1. Default Realm .. 25
10.2. Connecter Settings .. 25

10.2.1. Security and Authentication .. 25
10.2.2. Configuration .. 25
10.2.3. Producer settings ... 26

Kafka Connect

3

1. Introduction

The Kafka integration for the Privitar Data Privacy Platform can be used to apply a Data
Flow Job consuming the records from a Kafka topic and streaming the results to another
Kafka topic.

The Confluent “Gold Verified” integration is built on top of the Kafka Connect ecosystem.
It comes as a Connector you will be able to install on an existing cluster or a dedicated
cluster. You will be able to reuse the components you have already built for Kafka
Connect such as the Converters and Transformations.

By default, Kafka makes a connection to Privitar using Basic authentication, but Privitar
also supports Mutual TLS authentication.

The integration is tested to support the JsonConverter and AvroConverter provided by
the Confluent Platform and can be integrated with the schema registry.

1.1. Compatibility
The Privitar connector is built to run on Kafka Connect 2.0 or later and is tested for the
following combinations with the Privitar platform v3.8 (or later):

Kafka Connect version Kafka version / Confluent version
Kafka Connect 2.0 Kafka 2.0 / Confluent 5.0

Kafka Connect 2.0.x Kafka 2.3.x / Confluent 5.3

1.2. Deployment
The Privitar connector can be deployed to an existing cluster. However, because of the
nature of the work performed by the connector, it can be more CPU intensive than other
connectors. It is advised to deploy it to a cluster which will be dedicated to run Privitar
Data Flow jobs.

Kafka Connect

4

2. Architecture

The Privitar Connector is built with the following components:

• Consumer will pull the records from Kafka.
• Converter will deserialize binaries to a Kafka Connect data structure. This component is

pluggable and could be any converter implementing the Kafka Connect API such as a
StringConverter, AvroConverter or a JsonConverter.

• Transforms is a chain of transformations which can transform any fields in the Kafka
Connect data structure before the data is processed by the Privitar Sink Connector.
These transformations are pluggable and could be any transform implementing the
Kafka Connect API. This can help to transform the types such as transforming a
timestamp or a string to a Java Date or to flatten the data structure.

• The Privitar Connector will apply a Privitar Data Flow Job to the Record key and/or
value. The Data Flow Job can be a Masking Data Flow Job or an UnMasking Data Flow
Job.

• Destination Transforms is a chain of transformation similar to the first one, but can be
used to transform back the Java types to a serializable type after the data has been
processed by the Privitar Connector. This can help to transform the Java types such as
Date to a formatted date string.

• Destination Converter will serialize the Kafka Connect data structure to binaries.
• Producer will push the records to Kafka.

Kafka Connect

5

3. Installation

This section describes the Installation procedure for the Privitar Connector.

The Connector consists of two separate plug-ins, but they are both contained in single jar:

• Masking plug-in connector. (This plug-in is called, PrivitarSinkConnector)
• Unmasking plug-in connector. (This plug-in is called,
UnmaskPrivitarSinkConnector)

This document will refer to the Privitar Connector plug-in to mean both plug-ins. Where
necessary, it will reference a specific plug-in.

3.1. Pre-requisites
• Installed Kafka 1.1+ or Confluent 4.1+ (see supported versions in Introduction [4])
• Installed Kafka Connect 1.1+ (included from Confluent 4.1+).

3.2. Installation procedure
1. Create a folder in the plug-in directory used by the Kafka worker node.
2. Add the Privitar Connector plug-in to the new folder.
3. Add the necessary Token vault drivers into the new folder.
4. Restart the Connect worker node.

These steps need to be performed on every Kafka Connect worker node that will be using
the Privitar plug-in.

3.3. Create a folder
Create a folder to store the Privitar connector plug-in. The location for plug-ins is defined
by the plugin.path variable in the Kafka worker configuration file. For example:

plugin.path=/usr/local/share/kafka/plugins

Create a folder called, for example privitar-kafka-connect in that folder. This makes
the path to the Privitar connector plug-in:

/usr/local/share/kafka/plugins/privitar-kafka-connect

3.4. Add the plug-in
Copy the Privitar connector plug-in JAR file into the new folder. The Privitar plug-in is
supplied as an uber-JAR, so all the dependencies it requires are included in the jar - apart
from the drivers that will be needed to connect to the Privitar Token vault.

3.5. Add Token Vault drivers
Drivers are required by the Privitar plug-in to connect to the Privitar Token vault. These
drivers need to be added to the new Privitar plug-in folder. The drivers to include will be
specific to the type of database you are using to store the Privitar Token vault.

Kafka Connect

6

3.6. Restart Worker nodes
Restart all Kafka Connect worker nodes from the console.

When the worker nodes are restarted they will discover all connectors, transforms,
and/or converters defined within the Privitar plug-in. When we use a connector,
transform, or converter, the Kafka Connect worker loads the classes from the respective
plug-in first, followed by the Kafka Connect runtime and Java libraries. Kafka Connect
explicitly avoids all of the libraries in other plug-ins and prevents conflicts, making it very
easy to use connectors and transforms developed independently by different providers.

Kafka Connect

7

4. Configuring users

To run Data Flow jobs in Privitar you need to create API users with the correct
permissions to run both Masking and UnMasking Jobs in the Team that the Data Flow Job
is defined in. This section describes how to create and configure API users on Privitar to
run Data Flow Jobs. It is applicable for Data Flow jobs being set up on any of the following
data processing platforms:

• Kafka/Confluent
• Apache Nifi
• StreamSets

For more general information about managing Users, Roles and Teams in Privitar, refer to
the Privitar Data Privacy Platform User Guide.

4.1. Creating an API user to run Data Flow jobs
To create API users in Privitar for running Data Flow jobs:

1. Select API Users from the Superuser navigation panel.
2. Select Create New API User. The API User dialog box is displayed:

Enter the details for the new API user. The first two fields - Name and Username -
are mandatory. All other fields are optional:

Kafka Connect

8

• Name is the display name of the API user.
• Username is the unique username for the API user.
• Email is the email address associated with the API user. This is an optional field.
• Common Name is used for API authentication (if your Privitar installation is
configured to use Mutual TLS) or Password (if basic HTTP authentication is used).

You can click on Generate to generate a new password.
• To make sure the User account is activated, select the Account Enabled check box.
• Optionally, if you want this new API User to have Superuser permissions, select the

Superuser check box.
3. Click Save to save the details entered and to create the API user. The new API user

will be added to the list of API users shown in the main window.

Typically, you would create two API users; one to run Masking jobs and the other to run
UnMasking jobs. It is also possible for a single API user to run both jobs if required.

NOTE
It is also possible in Privitar to manage users externally in LDAP. If
managing users in this way, then instead of assigning individual API users
to a team role, you need to assign an LDAP group to the relevant team
role.

4.2. Masking Jobs
By default, the Data Flow Operator Role in the default Team in Privitar has the Run
Data Flow permission enabled for Masking Jobs. See:

The API user that has been created in Privitar will need to be assigned the role of Data
Flow Operator in the Team that the job is defined in.

Kafka Connect

9

In the example below, an API user called data_ops_api_user has been created and
assigned the role of Data Flow Operator:

4.3. UnMasking Jobs
For UnMasking jobs, you need to assign an API user to a Role that has permission to Run
Data Flow UnMasking jobs in the Team that the job is defined in.

In the example below, a new Role has been created called, Data Flow (Unmasking) with
the Run Data Flow permission enabled for Unmasking jobs:

The new additional API user (data_ops2_api_user) can be assigned to the Data Flow
(Unmasking) role:

Kafka Connect

10

Kafka Connect

11

5. Configuration using the REST API

To configure the Privitar plug-in using the REST API, follow the procedure below:

1. Make sure the Connector is properly installed on Kafka Connect by running:

curl -X GET http://localhost:8083/connector-plugins/

you should get back a list of connectors including both Privitar plug-ins:

{"class":"com.privitar.agrotera.dataflow.kafka.PrivitarSinkConnector","ty
pe":"sink","version":"3.2.0"}, ...]
{"class":"com.privitar.agrotera.dataflow.kafka.UnmaskPrivitarSinkConnecto
r","type":"sink","version":"3.2.0"}, ...]

2. Create a file configuration.json file with your connector configuration for each
plug-in. The example below shows the configuration for the
PrivitarSinkConnector plug-in:

{
"connector.class":
"com.privitar.agrotera.dataflow.kafka.PrivitarSinkConnector",
"tasks.max": "2",
"topics": "my-topic",
"privitar.publisherUrl": "https://localhost:8080",
"privitar.publisherUsername": "api_user",
"privitar.publisherPassword": "password",
"value.privitar.enabled": true,
"value.privitar.jobId": "8ebd",
"value.converter": "org.apache.kafka.connect.json.JsonConverter",
"value.converter.schemas.enable": false,
"dest.value.converter": "org.apache.kafka.connect.json.JsonConverter",
"dest.value.converter.schemas.enable": false,
"dest.bootstrap.servers": "localhost:9092",
"dest.topics": "my-destination-topic"
}

For more information on the configuration settings, see Configuration options [17].
3. Submit your new Connector to Kafka Connect:

curl -X GET http://localhost:8083/connectors/MyConnectorName/status

The response will show you if the Connector has actually started:

{
 "name": "MyConnectorName",
 "connector": {
 "state": "RUNNING",
 "worker_id": "connect:8083"
 },
 "tasks": [
 {
 "state": "RUNNING",
 "id": 0,
 "worker_id": "connect:8083"

Kafka Connect

12

 },
 {
 "state": "RUNNING",
 "id": 1,
 "worker_id": "connect:8083"
 }
],
 "type": "sink"
}

Finally, check the Kafka Connect logs where the plug-in is running. (The location
depends on configuration. For example, stdout).

Kafka Connect

13

6. Configuration using Confluent Control Center

To configure the Privitar plug-in using the Confluent Control Center, follow the procedure
below. This procedure must be followed for both Privitar Connector plug-ins:

• PrivitarSinkConnector

• UnmaskPrivitarSinkConnector

The procedure below is for the PrivitarSinkConnector plug-in. The same procedure
needs to be repeated for the UnmaskPrivitarSinkConnector plug-in:

1. Select Kafka Connect in the side bar.
2. Go to the SINKS tab.
3. Click + New sink.
4. Select the topic from where you want to consume the data:

5. Click Continue.
6. Select the Connector class to be PrivitarSinkConnector and give a name to the

Connector instance:

Kafka Connect

14

7. Add the configuration of the connector. (See Configuration Options [17] for more
information on the configuration options.)

8. Click Continue to review the configuration before submitting the configuration to
Kafka Connect.

9. You will be able to see the Connector running:

Kafka Connect

15

Kafka Connect

16

7. Configuration Options

The connector can be configured with the default SinkConnector settings and the
following additional settings.

NOTE
In the Privitar Platform v3.1.1 and earlier, the properties starting with
privitar.*, value.privitar.* and key.privitar.* used to start
with anonymiser.*, value.anonymiser.* and key.anonymiser.*.
From 3.2.0 it is possible to unmask values in a Data Flow Job by using the
separate UnmaskPrivitarSinkConnector connector class.

The following sections describe the configuration options that are available.

7.1. Privitar platform
The following table defines the configuration options available for the Privitar platform.

Property Name Description
key.privitar.enabled Set to True if you want to enable the Data Flow Job on the record keys.

key.privitar.jobId This is the Unique ID of the Data Flow Job to apply to the record keys.

key.privitar.schemaToJobIdMapping This is a mapping of fully qualified Avro schema names to Data Flow Job
IDs provided by the Privitar Policy Manager. The format should be:

<fully-qualified-schema-name>:<job-id>

in a comma-separated list. For example:

com.privitar.SchemaName1:3uhfkd,com.privitar.SchemaName2:4uj3ld

value.privitar.enabled Set to True if you want to enable the Data Flow Job on the record values.

value.privitar.jobId This is the Unique ID of the Data Flow Job to apply to the record values.

value.privitar.schemaToJobIdMapping This is a mapping of fully qualified Avro schema names to Data Flow Job
IDs provided by the Privitar Policy Manager. The format should be:

<fully-qualified-schema-name>:<job-id>

For example:

com.privitar.SchemaName1:3uhfkd,com.privitar.SchemaName2:4uj3ld

privitar.publisherUrl The Privitar Platform host and port. For example:

http://localhost:8080

privitar.publisherUsername The username and password of the API user.

The API user must have a role with Run Data Flow permission for
Masking jobs or Unmasking jobs in the team that the job is defined in.

Kafka Connect

17

Property Name Description
privitar.publisherPassword For more information about configuring users, see Configuring users [8].

privitar.authentication The method used to authenticate with the Privitar Policy Manager.
Possible values are mutualTls and basic.

The default setting is basic authentication.

privitar.tlsClientCertificatePath The location of the certificate file used for authenticating with the Privitar
Policy Manager.

privitar.tlsClientCertificatePassword The password for the TLS client certificate file.

privitar.tlsTrustedCertificateAuthorityCertificatePath The location of the TLS CA certificate file used for authenticating with the
Privitar Policy Manager.

privitar.tlsHostnameVerification Set to True (by default) to enable hostname verification for outgoing
connections to Privitar Policy Manager.

This property should be enabled in most cases. Disabling hostname
verification will degrade the overall security of TLS as there is no
guarantee about the server identity.

7.2. Connector converters
The following table defines the configuration options available for the Privitar Connector
converters.

Property Name Description
dest.key.converter The converter class to use to serialise the record key before to send

them out.

dest.value.converter The converter class to use to serialise the record value before to send
them out.

7.3. Processing Guarantee
The following table defines the configuration options available for the Privitar Processing
Guarantee.

Property Name Description
processing.guarantee The processing guarantee that should be used. Possible values are

exactly_once (default) and at_least_once. Note that exactly-
once processing requires a cluster of at least three brokers by
default which is the recommended setting for production; for
development you can change this, by adjusting broker setting
offset.state.log.replication.factor.

transactional.id.prefix This is the prefix the connector will use to generate the
transactional.id in case
processing.guarantee=exactly_once. Check Kafka
documentation for more details about how to pick a
transactional.id.

7.4. Error Handling
The following table defines the configuration options available for Error Handling.

Kafka Connect

18

Property Name Description
dest.errors.handler The failure handler to use. Possible values are:

• none (default)
• dead_letter_queue

• debug_log

Note that debug_log should only be chosen with non-
confidential test data since it will expose the data that is sent.
This handler will cover failures in Processor, Destination
Transformations, Destination Converter and Producer. To
cover failures on the first 2 stages 'Consumer', 'Converter' and
'Transformations', you will have to specify the Kafka connect
built-in errors.handler.

dest.errors.dlq.topic.name The topic name used if the error handler is
dead_letter_queue. The failed records will be sent out to
this topic. This is applicable for the following connector stages:
Processor, Destination Transformations, Destination Converter
and Producer. All errors in the stages before these ones won't
be forwarded to this DLQ. However, there is a property called
errors.dlq.topic.name in Kafka Connect you can enable to
cover these other stages.

dest.errors.transforms Aliases for the transformations to be applied to records sent to
the DLQ. Similar to the one provided by Kafka Connect with
‘transforms’.

dest.errors.transforms.* The configuration of the transformation applied before
sending the failed input record to the DLQ. The configuration is
similar to the 'transforms' setting from Kafka Connect.

7.5. Advanced Connector Settings
The following table defines the Advanced Connector Settings for the Privitar platform.

Property Name Description
value.schema.singleFieldName The field name in the Privitar schema to be used in case the record

value is a simple String or Long (and not an object with multiple
fields.

key.schema.singleFieldName This is the prefix the connector will use to generate the
transactional.id in case
processing.guarantee=exactly_once. Check Kafka
documentation for more details about how to pick a
transactional.id.

dest.key.schema.name The fully qualified name of the schema used for record keys "(eg.
with Avro, it will be the namespace and the name of a record such as
`com.record.namespace" .RecordName`). Default is the same
schema name as the input record. This property is only valid in
conjunction with the key.privitar.jobId property.

dest.value.schema.name The fully qualified name of the schema used for record values "(eg.
with Avro, it will be the namespace and the name of a record such as
`com.record.namespace" .RecordName`). Default is the same
schema name as the input record. This property is only valid in
conjunction with the key.privitar.jobId property.

Kafka Connect

19

Property Name Description
dest.key.schema.name.mapping The mapping of the fully qualified name of the input schemas to the

desired fully qualified name of the output schemas used for record
keys. Default is the same schema name as the input record. This
property is only valid in conjunction with the
value.privitar.schemaToJobIdMapping property. The format should
be:

<fully-qualified-input-schema-name>:<fully-qualified-output-schema-
name>

in a comma-separated list. For example:

com.privitar.SchemaName1:com.privitar.deidentified.SchemaName1,

com.privitar.SchemaName2:com.privitar.deidentified.SchemaName

dest.value.schema.name.mapping The mapping of the fully qualified name of the input schemas to the
desired fully qualified name of the output schemas used for record
values. Default is the same schema name as the input record. This
property is only valid in conjunction with the
key.privitar.schemaToJobIdMapping property. The format should be:

<fully-qualified-input-schema-name>:<fully-qualified-output-schema-
name>

in a comma-separated list. For example:

com.privitar.SchemaName1:com.privitar.deidentified.SchemaName1,

com.privitar.SchemaName2:com.privitar.deidentified.SchemaName

dest.transforms Aliases for the transformations to be applied to records. Similar to
the one provided by Kafka Connect with ‘transforms’.

dest.transforms.* The configuration of the transformation applied before to send the
anonymised record. The configuration is similar to the 'transforms'
setting from Kafka Connect.

7.6. Advanced Privitar Platform Settings
The following table defines advanced settings for the Privitar platform.

Property Name Description
privitar.maxCacheWeightBytes The maximum size (in bytes) that can be used by

cached tokens.

privitar.maxBatchSize Incoming records will be processed in batches no
larger than this size.

privitar.numConcurrentBatches The maximum number of batches that can be
processed in parallel.

privitar.tokenVault.kerberosKeytabPath Specifies the location of the kerberos keytab used
for connecting to a HBase token vault.

Kafka Connect

20

8. Configuration Examples

Firstly, you will have to specify the common required attributes including the input topic
from where the messages will be consumed:

connector.class=com.privitar.agrotera.dataflow.kafka.PrivitarSinkConnector
tasks.max=2
topics=<my-topic>

Then, you will have to specify the destination topic where the anonymized records will be
produced. The Kafka Broker can be the same as where is sitting the input topic, but can
also be different:

dest.bootstrap.servers=kafka-broker:9092
dest.topics=<my-destination-topic>

The required parameters to connect to the Privitar Policy Manager using Basic
Authentication:

privitar.authentication=basic
privitar.publisherUrl=https://privitar-policy-manager:8080
privitar.publisherUsername=<myUsername>
privitar.publisherPassword=<mySecretPassword>

Alternatively, you can add the required parameters to connect to the Privitar Policy
Manager using Mutual TLS:

privitar.authentication=mutualTls
privitar.tlsClientCertificatePath=<myClientPath>
privitar.tlsClientCertificatePassword=<myClientPassword>privitar.tlsTrustedCe
rtificateAuthorityCertificatePath=<myTrustedPath>

Then, if you are using Confluent Schema Registry and Avro, you will have to setup the
Kafka Connect converter for the record value and the Privitar Data Flow Job ID associated
with record schema:

value.privitar.enabled=true
value.privitar.jobId=c21a
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://schema-registry:8083
dest.value.converter=io.confluent.connect.avro.AvroConverter
dest.value.converter.schema.registry.url=http://schema-registry:808

Similarly, if you are using Confluent Schema Registry and Avro, but plan to process
multiple different Avro Schema types for the given topic, you will have to set up the Kafka
Connect converter for the record value and the Avro Schema Name to Job ID Mapping for
each Schema type. You will also need to configure the a subject name strategy on the
destination converter which supports different Schema types for the same topic (read
more about the Schema Registry's subject name strategy).

value.privitar.enabled=true
value.privitar.schemaToJobIdMapping=com.privitar.SchemaName1:3uhfkd,com.privi
tar.SchemaName2:4uj3ld
value.converter=io.confluent.connect.avro.AvroConverter

Kafka Connect

21

value.converter.schema.registry.url=http://schema-registry:8083
dest.value.converter=io.confluent.connect.avro.AvroConverter
dest.value.converter.schema.registry.url=http://schema-registry:8083
dest.value.converter.value.subject.name.strategy=io.confluent.kafka.serialize
rs.subject.TopicRecordNameStrategy

Alternatively, if you are using JSON without schema registry, you can setup a Kafka
Connect converter with JSON as below:

value.privitar.enabled=true
value.privitar.jobId=c21a
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=false
dest.value.converter=org.apache.kafka.connect.json.JsonConverter
dest.value.converter.schemas.enable=false

If your messages have a record key, you can for example setup Kafka Connect converter
for String and associate it with a different Privitar Data Flow Job ID. Note, if you are using
StringConverter or LongConverter, you will have to create a Privitar Table with a single
field (e.g. field1) and set the "singleFieldName" property as below.

key.privitar.enabled=true
key.privitar.jobId=4e5c key.schema.singleFieldName=field1
key.converter=org.apache.kafka.connect.storage.StringConverter
dest.key.converter=org.apache.kafka.connect.storage.StringConverter

In a development environment, you might like to log failure records in Kafka Connect logs
(you will need your Connect process to be logging Privitar code at least at INFO level to
see failures: log4j.category.com.privitar=INFO):

dest.errors.handler=debug_log

In a production environment, you should prefer to use a dead letter queue where to send
failure records. The first 2 settings are to enable Kafka Connect built-in DLQ and the last 2
to enable the handler specific to the Privitar plugin. You should additionally specify the
transforms to be applied; typically they would be the same as the input transforms.*
settings, but with the *.target.type setting targeting the original input (eg JSON string)
rather than the Java type (eg. Date):

errors.dlq.enable=true
errors.dlq.topic.name=my-dead-letter-queue
dest.errors.handler=dead_letter_queue
dest.errors.dlq.topic.name=my-dead-letter-queue

To unmask values, all the configuration options remain the same, but the connector class
property should be set to:

connector.class=com.privitar.agrotera.dataflow.kafka.UnmaskPrivitarSinkConnec
tor

Kafka Connect

22

9. Supported Data Types

This section describes the Converters used by the Privitar Connector plug-in together
with the supported data types used by the Connector.

9.1. Converters
Converters are used to serialise and deserialise the data from a transportable data
format to a Kafka Connect data structure.

This plugin is tested to work with the following converters:

Converter Path
Avro (Confluent platform) io.confluent.connect.avro.AvroConverter

Json org.apache.kafka.connect.json.JsonConverter

String org.apache.kafka.connect.storage.StringConverter

Long org.apache.kafka.connect.storage.LongConverter

However, it is possible to plug any converter as long it is implementing the Kafka Connect
"Converter" interface.

As described in Configuration using the REST API [12], you will have to specify some
converters to:

• Deserialise the key of consumed records (key.converter).
• Deserialise the value of consumed records (value.converter).
• Serialise the key of the anonymised records we want to send out

(dest.key.converter).
• Serialise the value of the anonymised records we want to send out

(dest.value.converter).

9.2. Data Types
The Privitar Data Flow supports the following data types:

Privitar
Platform type

Java type accepted
in input

Java type written in output

Boolean Boolean Boolean

Float Float Float

Double Double Double

Byte Byte Byte

Short Short Short

Integer Integer Integer

Long Long Long

Text String String

Date java.util.Date java.util.Date

Kafka Connect

23

Privitar
Platform type

Java type accepted
in input

Java type written in output

Timestamp java.util.Date java.util.Date

Other Any Java type The same Java type that was input. This type is
used when data is loaded from a source format
that contains types that Privitar does not
support. This enables data to be passed
through unchanged or dropped by specifying
Retain or Drop rules on the data in the Privitar
policy. Downstream systems consuming the
Privitar output can still use the data if it is
retained by the Privitar policy.

Depending of which converter you use, you might have to add few transformations to fit
your Kafka record data model with the Privitar schema.

For example, if you have a date/timestamp formatted as a string, you will have to add a
transformation to transform it to a Java Date with properties such as (for timestamps, the
type field will be Timestamp):

transforms=DateOfBirth
transforms.DateOfBirth.type=org.apache.kafka.connect.transforms.TimestampConv
erter$Value
transforms.DateOfBirth.field=dateOfBirth
transforms.DateOfBirth.target.type=Date
transforms.DateOfBirth.format=yyyy-MM-dd

And transform this Java Date back to a formatted date string once the Data Flow Job has
been applied:

dest.transforms=DateOfBirth
dest.transforms.DateOfBirth.type=org.apache.kafka.connect.transforms.Timestam
pConverter$Value
dest.transforms.DateOfBirth.field=dateOfBirth
dest.transforms.DateOfBirth.target.type=string
dest.transforms.DateOfBirth.format=yyyy-MM-dd

NOTE
org.apache.kafka.connect.transforms.TimestampConverter does not
support NULL values.

For more information about how to use the Confluent Timestamp converter, see the
TimeStampConverter section in the Confluent Technical Documentation.

Kafka Connect

24

https://docs.confluent.io/platform/current/connect/transforms/timestampconverter.html

10. Connecting with Kerberos

To use the Privitar Connector with Kerberos, there are two areas that you need to check
and if necessary modify:

• Default Realm definition
• Connector settings

WARNING
It is important to check these settings. If the Kerberos connection is not
setup correctly, it will retry indefinitely, without issuing any error or
warning message.

10.1. Default Realm
On each connecter host, your default realm should be defined in the /etc/krb5.conf
file.

10.2. Connecter Settings
The Connecter settings are defined in the connect-distributed.properties file. This
file is used to start the Connect instances and would be expected to have the following
properties and security and/or authentication protocols configured.

10.2.1. Security and Authentication
The Privitar Connector should be configured to use one of the following three security
and/or authentication protocols:

• SASL_PLAINTEXT
• SASL_SSL
• SSL

WARNING
It is important to check these settings. If the Kerberos connection is not
setup correctly, it will retry indefinitely, without issuing any error or
warning message.

10.2.2. Configuration
The Privitar Connecter acts as both a Sink Connecter (Consumer) as well as a Source
connecter (Producer). Therefore, you need to add both definitions for this Connecter.

Kafka Connect

25

• The Sink Connecter (Consumer) can use the definitions used by all Connectors in the
connect.distributed.properties file.

• The Source Connecter (Producer) definitions need to be added to the
configuration.json file for the connector. The configuration statements are added
using the dest prefix. Some examples are provided in the following section.

For more information about setting up Kerberos together with any additional encryption
or security authentication protocol, refer to the Confluent documentation. Here are some
appropriate links:

• https://docs.confluent.io/current/tutorials/security_tutorial.html
• https://docs.confluent.io/current/kafka/encryption.html
• https://docs.confluent.io/current/kafka/authentication_sasl/index.html

10.2.3. Producer settings
A column can also be also be configured as Do not generalise. If you choose this option,
you must also set this as a sensitive column by selecting the Sensitive check box.
Specifying a column as Sensitive and Do not generalise ensures that for each cluster of
rows with the same quasi-identifier values, there is a diverse mix of values for the
sensitive columns. See Sensitive fields and L-diversity for more information.

• SASL_PLAINTEXT - auth but no encryption
• SASL_SSL - auth with kerberos and encrypted comms

WARNING
It is important to check these settings. If the Kerberos connection is not
setup correctly, it will retry indefinitely, without issuing any error or
warning message.

Producer settings (using SASL_PLAINTEXT security protocol)
The producer configuration should look as follows:

NOTE
For the dest.sasl.jaas.config property, make sure there are no spaces
between lines of the jaas.config (i.e. where there are \n, there should be no
spaces before or after)

"dest.bootstrap.servers": "1.1.1.1:9092,1.1.1.2:9092,1.1.1.3:9092",
"dest.sasl.mechanism":"GSSAPI",
"dest.sasl.kerberos.service.name":"kafka",
"dest.security.protocol":"SASL_PLAINTEXT",

Kafka Connect

26

https://docs.confluent.io/current/tutorials/security_tutorial.html
https://docs.confluent.io/current/kafka/encryption.html
https://docs.confluent.io/current/kafka/authentication_sasl/index.html

"dest.sasl.jaas.config":"com.sun.security.auth.module.Krb5LoginModule
required\nuseKeyTab=true\nkeyTab=\"/path/to/keytab/file/kafka.keytab
\"\nstoreKey=true\nuseTicketCache=false\nserviceName=\"kafka\"\nprincipal=
\"kafka/a-full-host-name@APRINCIPALNAME.COM\";"

Producer settings (using SASL_SSL security protocol)
To use SASL_SSL as the security protocol between the connector and the brokers instead,
use the following configuration in addition to what is above (some properties need to be
replaced):

"dest.security.protocol":"SASL_SSL",
"dest.ssl.keystore.location":"/path/to/a/client/keystore/file/
kafka.client.keystore.jks",
"dest.ssl.keystore.password":"client-keystore-password",
"dest.ssl.truststore.location":"/path/to/a/client/truststore/file/
kafka.client.truststore.jks",
"dest.ssl.truststore.password":"client-truststore-password",
"dest.ssl.key.password":"client-keystore-password"

NOTE
For the dest.bootstrap.servers property, make sure to use the right port for
the SASL_SSL protocol.

Kafka Connect

27

	Kafka Connect
	Table of Contents
	1. Introduction
	1.1. Compatibility
	1.2. Deployment

	2. Architecture
	3. Installation
	3.1. Pre-requisites
	3.2. Installation procedure
	3.3. Create a folder
	3.4. Add the plug-in
	3.5. Add Token Vault drivers
	3.6. Restart Worker nodes

	4. Configuring users
	4.1. Creating an API user to run Data Flow jobs
	4.2. Masking Jobs
	4.3. UnMasking Jobs

	5. Configuration using the REST API
	6. Configuration using Confluent Control Center
	7. Configuration Options
	7.1. Privitar platform
	7.2. Connector converters
	7.3. Processing Guarantee
	7.4. Error Handling
	7.5. Advanced Connector Settings
	7.6. Advanced Privitar Platform Settings

	8. Configuration Examples
	9. Supported Data Types
	9.1. Converters
	9.2. Data Types

	10. Connecting with Kerberos
	10.1. Default Realm
	10.2. Connecter Settings
	10.2.1. Security and Authentication
	10.2.2. Configuration
	10.2.3. Producer settings
	Producer settings (using SASL_PLAINTEXT security protocol)
	Producer settings (using SASL_SSL security protocol)

