4.» Informatica

Informatica® Multidomain MDM
10.4 HotFix 1

Data Controls
Implementation Guide

Informatica Multidomain MDM Data Controls Implementation Guide
10.4 HotFix 1
September 2020

© Copyright Informatica LLC 2001, 2022

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2022-06-27

Table of Contents

o -1 T+ 5
Informatica RESOUrCesS. 5
Informatica Network. 5
Informatica Knowledge Base. 5
Informatica Documentation. 6
Informatica Product Availability Matrices. 6
Informatica Velocity. e 6
Informatica Marketplace. 6
Informatica Global Customer Support. 6

Chapter 1: IDC Concepts.....ccovueneeeeneninrneneneeaeacarnenanaeaeacannnnans 1

Usage of IDD. e 7
IDC Control Type. . . . o o 7
IDC CONTIol. . . o o 7
Levels of Integration. e 8
Chapter 2: Implementation Process...........cooiiiiiiiiiiiiieenenennnnnnn. 9
OVEIVIEW. .« . o 9
Before You Begin. 9
Configuration ProCess. e 10
Step 1. Build, Deploy, and Test the IDD Application. 10
Step 2. Createthe IDC Control. e 10
Step 3. Configure IDC Control Overrides. e 10
Step 4. Testthe IDC Controlina Browser. e 10
Step 5. Embed the IDC Control in a Third-party Application. 10

Chapter 3: Configuring Controls in the IDD Configuration Manager........... 11

Creatinga Control. 11
Format of the Control URL. 11
Localization. 13
User Authentication and Password Encryption. 13

Chapter 4: IDC Control Overrides...........cccoiiiiiiiiiiiiiinineeenenen... 14

OVEIVIEW. .« o o 14
XML Filesand Root Elements. 14
Steps to Override IDC Controls. e 15
Using XML Tools to Configure Configuration XML Files. 16
Layout Overrides.o e 16
Adding Custom ACHIONS. 17
Adding User EXits. e 17

Table of Contents 3

Properties. e 18

Duplicate Prevention Configuration. 18
System Name. 19
Import Configuration. 19
JavaScript Messaging in Internet Explorer 7. 21

Chapter 5: IDC Controls.ccciiiiiiiiiiiiiiii i iiiieieeeerararnnnnns 22

OVEIVIEW. .« .« o 22

Clickable Path. 22

Hierarchy Manager. e 23

History View. e 24

Duplicate Prevention. e 24
MESSAQING. o e e e 25
Error Handling. e e 27

Chapter 6: Embedding Controls.............ccoiiiiiiiiiiiiiiiiiiiiiiiiinian, 28

OVEIVIEW. . . . o 28

Loose Coupled Controls. e 28

Duplicate Prevention Control. 29
Salesforce Scenario. 29
Requirements. e 29
Implementation. L 30

Accessing IDC Components Bound to Different IDD Configurations. 35

4 Table of Contents

Preface

Refer to the Informatica® Multidomain MDM Data Controls Implementation Guide to learn how to configure
user interface controls to expose and embed MDM Hub data in third-party applications. Learn how to
implement and configure tasks in IDC. Also, learn how to configure IDC using the Informatica Data Director
Configuration Manager.

This guide assumes that you have read the Multidomain MDM Overview Guide and have a basic
understanding of MDM Hub architecture and key concepts.

Attention: To use IDC, your Informatica MDM Hub implementation must have a license for the IDC feature.

Informatica Resources

Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network

The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:
e Search the Knowledge Base for product resources.

e View product availability information.

e Create and review your support cases.

e Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base

Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com

6

Informatica Documentation

Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices

Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity

Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace

The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support

Preface

You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

https://docs.informatica.com
mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

CHAPTER 1

IDC Concepts

This chapter includes the following topics:
e Usage of IDD, 7

e |DC Control Type, 7

e [DC Control, 7

e Levels of Integration, 8

Usage of IDD

IDC controls are tightly bound to an IDD application. IDD is a generic application framework which, when
combined with an IDD application configuration, provides a user interface customized for a customer's data
model and data governance needs. In the same way, IDC controls provide generic functionality that becomes
specific when bound to an IDD application configuration.

From an IDD application configuration, an IDC control can use subject area definitions, layouts, search,
cleanse and validation, customizations, data security, and localization.

IDC Control Type

An IDC control type is a generic control. Once a control type is bound to an IDD application, the control is
available for use. The Informatica MDM Hub provides three built in control types - History View, Hierarchy
Manager, and Duplicate Prevention.

The IDC framework provides the ability to deploy additional control types. If you need additional control
types, contact Informatica Global Customer Support.

IDC Control

An IDC control is an instance of an IDC control type that has been created and bound to an IDD application.
Throughout this document, an IDC control is simply referred to as a control .

Levels of Integration

8

Integration of a control and a third-party application can range from loose to tight:

Integration Level

Description

Loose

The control is unaware of the
containing application and simply
embeds within the containing
application. The only communication
between the application and the
control is through the invoking URL.

Tight

The control is aware of the
containing application and can
interact directly with that
application.

The Hierarchy Manager and History View controls, provided with Informatica MDM Hub, provide loose

integration.

The Duplicate Prevention control require tight integration with calling application.

Chapter 1: IDC Concepts

CHAPTER 2

Implementation Process

This chapter includes the following topics:

Overview, 9

Before You Begin, 9

Configuration Process, 10

Overview

This section describes the recommended high-level process for configuring IDC controls. This process
should be used as a template for creating IDC implementation plans. The main goal is to outline the steps in
the build/test cycle that would provide an efficient model for rapid IDC development. Such an incremental
approach allows you to use the intermediate stages of the configuration process for getting additional
feedback and validating requirements with the customer.

Before You Begin

This section assumes the following prerequisites:

The MDM Hub, cleanse adapters, and Process Servers are already configured and operational in your
environment. For more information, see the Multidomain MDM Installation Guide.

The Operational Reference Store (ORS) schemas are configured and contain some test data. The Hub
Console is used to create the configuration elements in the target ORS, such as base objects, packages,
lookups, match path controls, and so on.

All base objects and associated metadata need to be configured as SECURE in the Secure Resources tool
in the Hub Console.

The application for Data Director has been configured and tested as described in the Multidomain MDM
Data Director Implementation Guide.

Configuration and initial testing should be done using an Informatica MDM Hub user account with
unrestricted privileges for the target ORS schemas. You can either use the admin account or any other
account that is configured with all privileges to the ALL_GLOBAL_RESOURCES group. The
ALL_GLOBAL_RESOURCES group does not include the custom resources added as part of the application.
Custom resources must be configured individually.

For more information about Hub Console tools, see the Hub Console online help or the Multidomain MDM
Configuration Guide.

Configuration Process

10

The IDC configuration process involves the following steps. Bear in mind that this is an iterative process, not
a linear, one-time procedure.

Step 1. Build, Deploy, and Test the IDD Application

An IDC control is entirely dependent on a Data Director application for the structure and behavior of subject
areas. Before creating the IDC control, the Data Director application should be built, deployed, and tested
according to the instructions in the Multidomain MDM Data Director Implementation Guide or the Data
Director Configuration Manager online help. Configured IDC controls are deployed in the same Java Memory
Model (JMM) as the Data Director application instance within the same application server environment.

Step 2. Create the IDC Control

Use the IDD Configuration Manager (see “Configuring Controls in the IDD Configuration Manager” later in this
document) to create IDC controls as part of a deployed IDD application. An IDD application can contain
multiple IDC controls. Each control is given a unique name. Once created, the URL used to invoke the control
is available (see “Format of the Control URL" later in this document). The URL contains parameters that
specify the subject area and key to the data. Each control can be used with any subject area in the IDD
application.

Step 3. Configure IDC Control Overrides

By default, an IDC control uses the configuration of the IDD application to determine its visualization. As
described in “IDC Control Overrides” later in this document, layouts, custom actions, and user exits can be
overridden for individual controls.

Step 4. Test the IDC Control in a Browser

The control’'s URL can be used directly in a web browser, with appropriate values provided for the key. This
provides a simple way to verify the control’s configuration.

Note: If you are using the Safari browser, in the browser's toolbar click Preferences, click Privacy and select
Never for the Block cookies: option to allow and remember all cookies.

Step 5. Embed the IDC Control in a Third-party Application

Once a control has been tested, configure a third-party application to embed the web content of the control
(see "Embedding Controls” later in this document). The details of doing this are specific to each third-party
application. Embedding includes the invocation of the control URL with the data key for the currently-shown
data.

Chapter 2: Implementation Process

CHAPTER 3

Configuring Controls in the IDD
Configuration Manager

This chapter includes the following topics:

e Creating a Control, 11

e Format of the Control URL, 11

e Localization, 13

e User Authentication and Password Encryption, 13

Creating a Control

The IDD Configuration Manager is used to create, edit and manage IDC controls. To create a control:
1. Inthe IDD Configuration Manager, edit the IDD application.
2. On the Controls tab, click Add Control.

3. Specify the name and display name for the control and the control type. The name must be unique
among all controls defined in this IDD application.

4. Click OK.

Click Save. If the IDD application is already deployed, the control is ready to use. If not, first deploy the
IDD application.

6. Select the control in the tree, then click Show URL. This displays the template for the URL that is needed
to invoke the control.

7. Testthe URL by running it in a browser.
8. Copy the URL and integrate it into the third-party application that will be used to invoke the control.

Format of the Control URL

The format of the control URL is:

http://<host>[:<port>]/bdd/bdc/<controlName>/[sag:<sagName> |sa:<saName>],<key>/<controlType>/
component.jsf[?username=<username>&password=<password>&bdd name=<bddName>]

11

12

where:

Parameter Description
Host Name of the machine where the Informatica MDM Hub is hosted.
Port Port number (defaults to port 80 if not specified in the URL).

controlName

Name of the control.

sagName Name of the subject area group for the data to be displayed. This is required for HM and History
controls.

saName Name of the subject area. This is required for Duplicate Prevention control.

key Key to the data to be displayed. This has different meaning depending on the control type.

- Hierarchy Manager and History Controls:
This can be either of the following:
“rowid:<rowidValue>"
OR
“sourceKey:<sourceKeyValue>,systemName:<systemNameValue>"
- Duplicate Prevention control:

This should contain search criteria to perform search for duplicates, values of Hub match columns
that will be used for matching:

“fieldName:<fieldValue>[,fieldName:<fieldValue>]
mc.<matchColumnName>:<value>]"

noa

mc.<matchColumnName>:<value>|,

If match column is based on column of DATE type, then its value must be specified as string in the
format 'M-d-yyyy H-m-s' (for example date 'March 17, 2010' should be passed as '3-17-2010 0-0-0')

controlType

For the default control types: hm, history or duplicate prevention.

username User name to use to authenticate this request.

password Password to use to authenticate this request.

bdd_Name The name of the IDD application to which the control is bound.
Note:

e Any characters in the parameters that are not allowed in a URL must be double encoded (see
HTML URL Encoding Reference for details on URL encoding). Double encoding (running the encoding

process twice) is requested on purpose as it is needed to allow web server to accept requests containing
slashes ("/" and "\") in parameters, when single-encoded, requests containing single-encoded slashes are
thrown back by web servers. Only the parameter values should be double encoded.

e The username, password, and bdd_name parameters are optional and can be used to automatically log a
user into the control. This should be used with caution, however, because the URL is not encrypted (even
if using HTTPS). Supplying login credentials as parameters can be useful when there is a read-only user
account that can be accessed by all users.

Chapter 3: Configuring Controls in the IDD Configuration Manager

http://www.w3schools.com/TAGS/ref_urlencode.asp

L ocalization

All of the resources for the built-in controls are included in the standard Data Director IDD resource bundles.
Localization of these controls is done as part of the process of localizing the IDD application. IDD
applications and IDC controls share context in the web browser. When a user selects a language in the IDD
application, that selection is saved as a preference that will carry over to IDC controls. For more information
about localizing IDD applications, see the Multidomain MDM Data Director Implementation Guide.

User Authentication and Password Encryption

You can configure authentication for URLs in Data Director (IDD). When enabled, when users log in, they pass
their user name and password to the URL in Data Director. You can also configure Data Director to pass the
user name and password in an encrypted format.

By default, as a security precaution, the automatic login functionality is disabled. To enable this functionality
so that login credentials can be passed as parameters in an URL, add the following setting to
cmxserver.properties and restart the application server:

cmx.bdd.enable url authentication=true

If you use a password encryption tool to encrypt a password, you must use the same key to encrypt and
decrypt the password.

For more information about configuring the cmxserver.properties file, see the "MDM Hub Properties”
appendix in the Multidomain MDM Configuration Guide.

For more information about encrypting the user name and password, see the "User Interface Extensions”
section in the Multidomain MDM Data Director Implementation Guide.

For more information about the password encryption tool, see the Multidomain MDM Resource Kit Guide.

Localization 13

CHAPTER 4

IDC Control Overrides

This chapter includes the following topics:

e Qverview, 14

e XML Files and Root Elements, 14

e Steps to Override IDC Controls, 15

e Using XML Tools to Configure Configuration XML Files, 16

e Layout Overrides, 16

e Adding Custom Actions, 17
e Adding User Exits, 17

e Properties, 18
e Duplicate Prevention Configuration, 18

Overview

By default, the IDD application configuration determines how subject areas are displayed in the controls. For
individual controls, you can manually override certain display settings and behaviors. Overrides do not affect
the underlying data structure of the subject areas in the IDD application.

By default, IDC controls have no custom actions or user exits defined (these are not inherited from the IDD
application). You can use IDC overrides to extend functionality by adding custom actions and user exits.

XML Files and Root Elements

Overrides are managed by creating a set of XML files. Each control has one set of files. Therefore, each
control can have individual overrides. One or all of these files are combined in a ZIP file that can be uploaded
to the IDD Configuration Manager to configure the control.

The MDM Hub Resource Kit includes the XML schema, siperian-bdd-config-6.xsd, that defines the IDD
configuration file and these IDC configuration files. The HTML documentation for the XML schema describes

14

individual elements and attributes in the schema. The following table describes the names of the XML files
along with the XML root element that each file must contain.

Element File Name XML Root Element Description Applicability
Layout layout- layoutConfig Controls which fields from each HM, History,
config.xml base object are displayed, as well Duplicate
as field sizes and number of Prevention
columns for each row.
Custom ela- externalLinkActionsConfig | Controls the custom actions that HM
actions config.xml are shown for subject areas and
HM objects.
User exits ue-config.xml | userExitsConfig Controls the user exits that are HM
applied to subject area and HM
operations.
Properties bdc- bdcConfiguration Specifies control-specific Duplicate
config.xml configuration properties. Prevention
Mapping pmc- pmcConfig Specifies target system name and Duplicate
config.xml import settings for Duplicate Prevention

Prevention control

Steps to Override IDC Controls

To override the default IDD visualization and behavior for an IDC control:

1.
2.

Create the set of override XML files for the control.

Create a ZIP file containing the override XML files. You can use any name, as it will be stored in the IDC

configuration section of the database. All configuration files must be in the root directory of the ZIP file.

override.
On the Controls tab, select the IDC control you want to override.

Click Edit.

In the IDD Configuration Manager, edit the IDD application associated with the control you want to

In the Edit dialog, click Browse, select the ZIP file containing the overrides, and then choose OK.

Note: Only when uploading the ZIP file containing the overrides for duplicate prevention control, a
validation check will be performed on the selected ZIP file of pmc-config.xml and validation error

messages are displayed, if any.

including the overrides, are applied automatically.

Steps to Override IDC Controls

Save changes to the IDD application. If the IDD application is already deployed, the IDC control changes,

15

Using XML Tools to Configure Configuration XML
Files

The Informatica MDM Hub Resource Kit includes an XML schema, siperian-bdd-config-6.xsd, that defines
the format for the IDD and IDC configuration XML files. This XSD file is very useful when working with XML
editors. It can guide you in editing the file and, most importantly, it is used by the editor to verify the
correctness of the XML in the IDD or IDC configuration file. Every configuration XML file should pass this test
before being imported into the IDD Configuration Manager.

While a simple text editor can be used to modify the IDD configuration, there are many XML editing tools that
make working with XML much easier, including:

Editor URL

XML Copy Editor http://xml-copy-editor.sourceforge.net/

XML Spy http://www.altova.com/products/xmlspy/xmlispy.html
oXygen http://www.oxygenxml.com/

Layout Overrides

The following example shows a layout override for a Person subject area. This override allows you to choose
a subset of the columns and child objects for the subject area to be displayed when the IDC control is
invoked.

e The name attribute in the sagLayout and saLayouts elements refers to the name of the subject area group
and subject area in the IDD application configuration. The XML structure allows for more than one
tabLayout for each subject area. For IDC controls, only the first one is used.

e The tabLayout configures a set of columns for a primary object, child, or grandchild. Child and grandchild
tabLayouts are nested in their parent tabLayout . The attribute on a child or grandchild tabLayout refers to
the name of a child or grandchild object in the IDD application configuration.

<?xml version="1.0" encoding="UTF-8"?>

<layoutConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
name="test"
xsi:noNamespaceSchemalLocation="./siperian-bdd-config-6.xsd">

<sagLayout name="Party">
<salayouts name="Person">
<salayout name="One" compactMode="true">
<tabLayout columnNum="3">

<column columnUid="C PARTY|FIRST NAME"/>

<column columnUid="C_ PARTY|MIDDLE NAME" />

<column columnUid="C PARTY|LAST NAME"/>

<column columnUid="C PARTY|BIRTHDATE" />

<column columnUid="C PARTY|DISPLAY NAME"/>

<tabLayout name="Name">
<column columnUid="C PARTY NAME|NAME"/>

</tabLayout>

<tabLayout name="Phone" columnNum="3">
<column columnUid="C PARTY PHONE| PHONE7COUNTRY7CD"/>
<column columnUid="C PARTY PHONE |PHONE NUM"/>
<column columnUid="C PARTY PHONE|IS VALID IND"/>

</tabLayout>

16 Chapter 4: IDC Control Overrides

</tabLayout>
</salayout>
</salayouts>
</sagLayout>
</layoutConfig>

Adding Custom Actions

The following example shows custom action (external link) overrides for a Person subject area and HM
configuration.

¢ The name attribute in the sagExternalLinkActions and saExternalLinkActions elements refers to the name

of the subject area group and subject area in the IDD application configuration.
¢ The usage of the externalLinkAction element is the same as in the IDD application configuration.

<?xml version="1.0" encoding="UTF-8"?>
<externallinkActionsConfig name="test" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"

xsi:noNamespaceSchemalocation="./siperian-bdd-config-6.xsd">

<sagExternallLinkActions name="Party">
<saExternallLinkActions name="Person">
<externalLinkAction callback="false" displayName="Google search"
name="person google search action bdc">
<externallink name="person google search child link" type="IFRAME"
url="http://www.google.com/search">
<param bddParamName="C_ PARTY|DISPLAY NAME" name="q" />
<param name="hl" staticValue="en" />
</externallLink>
</externallLinkAction>
</saExternallinkActions>
</sagExternallLinkActions>
<hmExternallLinkActions uid="Default|Master" logicalOrsGroupName="Test">
<externallLinkAction callback="false" displayName="Google Search"
name="hm google search action bdc">
<externallink name="hm google search link" type="IFRAME"
url="http://www.google.com/search">
<param bddParamName="SELECTED GRAPH OBJECTS" name="q" />
<param name="hl" staticValue="en" />
</externallLink>
</externallinkAction>
</hmExternallLinkActions>
</externallinkActionsConfig>

Adding User Exits

The example below shows user exit overrides for a Person subject area and HM configuration.

e The name attribute in the sagUserExits and saUserExits elements refers to the name of the subject area
group and subject area in the IDD application configuration.
e The usage of the userExits element is the same as in the IDD application configuration.
<?xml version="1.0" encoding="UTF-8"?>
<userExitsConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

name="test"
xsi:noNamespaceSchemaLocation="./siperian-bdd-config-6.xsd">

<sagUserExits name="Party">

Adding Custom Actions

17

<saUserExits name="Person">
<userExits className="com.siperian.bdd.userexits.sample.SaveHandler"/>
<userExits
className="com.siperian.bdd.userexits.sample.CustomActionProvider"
actionName="Launch CustomActionProvider from BDC"/>
</saUserExits>
</sagUserExits>
<hmUserExits uid="Default|Master" orsUid="Test">
<hmRelationshipTypeUserExits uid="HM RELATIONSHIP TYPE.employes">
<userExit
className="com.siperian.bdd.userexits.sample.HMRelationshipHandler"/>
</hmRelationshipTypeUserExits>
<userExits className="com.siperian.bdd.userexits.sample.GraphUserExit"
actionName="BDC Graph Action"/>
</hmUserExits>
</userExitsConfig>

Properties

IDC controls can expose properties that are used to modify their behavior or appearance. The Hierarchy
Manager and History View controls do not expose any properties. Duplicate Prevention control exposes
parentUrl property that can be used to enable JavaScript messages for IE7 browser.

The following example shows the specification of two sample properties.

<?xml version="1.0" encoding="UTF-8"?>
<bdcConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="./siperian-bdd-config-6.xsd">

<property name="samplePropertyl">valuel</property>
<property name="sampleProperty2">value2</property>
</bdcConfiguration>

Duplicate Prevention Configuration

Duplicate Prevention control requires configuration file to work properly. This is used to specify the name of
the target Source System and to control the behavior of the import functionality.

The following is a sample pmc-config.xml file, with a minimal Duplicate Prevention configuration:

<?xml version="1.0" encoding="UTF-8"?>

<pmcConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="siperian-bdd-config-6.xsd"

systemName="SFDC">

</pmcConfig>

Associate a Match Rule Set

When you create a new record in an external source system such as Salesforce.com, you can associate a
match rule set to perform a search for duplicates. This allows you to leverage the cleansed and corrected
data that already exists in the MDM server and prevent the creation of duplicate data at the external source.

The following code snippet is an example on how to configure pmc-config.xml file, to associate a match rule
set for Duplicate Prevention control.
<?xml version="1.0" encoding="UTF-8"?>

<pmcConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="siperian-bdd-config-6.xsd" systemName="Admin"

18 Chapter 4: IDC Control Overrides

import="true">
<matchRuleSet saName="Person" uid="C_ PARTY|IDL" type="AUTO"/>
<matchRuleSet saName="Organization" uid="C_PARTY|IDL" type="BOTH"/>

<mdmEntity name="Person" sourceEntity="PersonEntity">
<columnMapping columnUid="C PARTY|FIRST NAME" sourceColumn="FirstName"/>
<columnMapping columnUid="C PARTY|LAST NAME" sourceColumn="LastName"/>

<mdmEntity name="ShipAddresses" sourceEntity="ShipAddressesEntity" maxOccur="10">
<columnMapping columnUid="C ADDRESS|CITY NAME" sourceColumn="City"/>

<mdmEntity name="ShipAddressService" sourceEntity="ShipAddressServiceEntity">
<columnMapping columnUid="C ADDRESS CHILDS5|COLUMN1"
sourceColumn="Columnl"/>
</mdmEntity>
</mdmEntity>
</mdmEntity>
</pmcConfig>
In this example, the saName attribute is the name of subject area, where duplicate search will be performed.
The uid attribute is the match rule set name (1DL) defined for the base object (C_PARTY). The type attribute is

the matchtype for which you can define values either AUTO or BOTH.

System Name

The systenName attribute contains the name of the target Source System, which is the Source System
configured in the Hub that is used to provide to the Hub data from the application embedding Duplicate
Prevention control. This is a required configuration attribute that effects actions available for matched
records found by Duplicate Prevention control.

RELATED ToOPICS:

e “Duplicate Prevention” on page 24

Import Configuration

Duplicate Prevention control lets you create new records using data available in the Hub, in the application
embedding the control. The control sends data of the selected matched record as content of ON_IMPORT
event. The matched record is then serialized into a string in JSON format (in this string fields of numeric
types are converted into string using Java String.valueOf method, values of date/time columns are
converted into string using format 'M-d-yyyy H-m-s"). The format of JSON string and the list of imported
objects and fields are configured using the mdmEntity element:

<mdmEntity name="<IDD object name>" sourceEntity="<object name in JSON>" maxOccur="<max
objects to export>">
<columnMapping columnUid="<column UID>" sourceColumn="<column name in JSON>"/>
<columnMapping columnUid="<column UID>" sourceColumn="<column name in JSON>"/>
</mdmEntity>
The mdmEntity element has following attributes:
name
Name of the IDD object (SubjectArea, Child or Grandchild) that must be imported.
sourceEntity

Name of the object in the generated JSON string.

If the embedding application converts this string into a JavaScript object, then this name must be a valid
JavaScript variable name and must not start with a number.

Duplicate Prevention Configuration 19

maxOccur
Maximum number of objects to be imported for children and grandchildren controls.

If this attribute is not specified, then only 10 objects are imported. To import all objects, the value must
be set to -1. This attribute is ignored for Logical One:One children, where only 1 child is imported.

Only objects and fields that are explicitly specified in the configuration are imported. If import configuration
is not specified, then all fields of the SubjectArea’'s PrimaryObject are imported.

Consider a scenario where the SubjectArea Perso, has children Telephones and Addresses, and the
Addresses child has the AddressesSerivces grandchild. If the imported data must contain only
PrimaryObject's data, all the Addresses children and no more than five AddressesServices grandchildren,
then the following import configuration can be used:

<?xml version="1.0" encoding="UTF-8"?>
<pmcConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="siperian-bdd-config-6.xsd" import="true”
systemName="SFDC">
<mdmEntity name="Person" sourceEntity="Person">
<columnMapping columnUid="C PARTY|FIRST NAME" sourceColumn="FirstName"/>
<columnMapping columnUid="C PARTY|LAST NAME" sourceColumn="LastName"/>

<mdmEntity name="Addresses" sourceEntity="Addresses" maxOccur="-1">
<columnMapping columnUid="C ADDRESS|CITY" sourceColumn="City"/>
<columnMapping columnUid="C ADDRESS|STATE" sourceColumn="State"/>

<mdmEntity name="AddressesServices" sourceEntity="AddressesServices "

maxOccur="5">
<columnMapping columnUid="C_ ADDRESS SERIVE|PHONE" sourceColumn="Phone"/>

</mdmEntity>

</mdmEntity>
</mdmEntity>
</pmcConfig>

following sample code handles ON_IMPORT event and works with JSON string:

function handleImportEvent (event) {
var importedRecordString = event[‘record’];

// convert JSON string into JavaScript object
var importedRecord = eval (‘(’ + importedRecordString +')’);

// get FIRST NAME field of PrimaryObject
var firstName = importedRecord.Person.FirstName

// get CITY field of first child Addresses
var city = event[record].Addresses[0].City

// get PHONE field of AddressServices grandchild
var phone = event[record].Addresses[0]. AddressServices[0].Phone;

}

The import attribute can be used to disable the import functionality. If it is disables, then the import button is
not displayed. By default, the import functionality is enabled). To disable the import functionality, set the
import attribute to false, as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<pmcConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="siperian-bdd-config-6.xsd" import="false”

systemName="SFDC">
</pmcConfig>

20 Chapter 4: IDC Control Overrides

JavaScript Messaging in Internet Explorer 7

The Duplicate Prevention control sends events to the embedding application by using postmessage plugin.
This plugin uses the window.postMessage JavaScript function that is not supported by Internet Explorer 7.
You must use a workaround based on window location hash polling, by providing the current URL of the
parent window embedding Duplicate Prevention control (full URL string displayed in the browser's navigation
bar) to the postmessage plugin. This is required for setting the location hash of the target window. You must
pass the value of this URL to the Duplicate Prevention control by using one of the following methods:

o |f the URL does not change in your environment, then specify the URL in the bdc-config.xml properties file
using the parentUrl parameter, as shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<bdcConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="siperian-bdd-config-6.xsd">
<property name="parentUrl">http://c.na7.visual.force.com/apex/SomePage</property>
</bdcConfiguration>
Note: The value specified in the properties file must exactly match the URL in the navigation bar of the
browser. This value is case-sensitive.

You cannot use this method if single control instance needs to be embedded in multiple pages with
different URLs.

¢ |f the URL changes in your environment, or if single control instance needs to be embedded in multiple
pages with different URLs, then dynamically detect the URLs on the embedding application side and pass
it to the control as the parentUrl parameter inside the URL of the control. The value of the parentUrl
parameter must be double encoded.

The following example shows a JavaScript code that detects the current URL displayed in the browser and
constructs URL of Duplicate Prevention control with parentUrl parameter to embed it into the HTML page
iFrame with control:
// get current URL
var parentUrl = document.location.href;
// double encode URL using standard JavaScript function ‘encodeURIComponent’
parentUrl = encodeURIComponent (encodeURIComponent (parentUrl));
// embed into the page iframe with Duplicate Prevention control
document.writeln('<iframe src="http://<host>:<port>/bdd/bdc/<component name>/
sa:<subject area>,<match parameters>,parentUrl:' + parentUrl + '/proactive match/
component.jsf" </iframe>');
Also, Internet Explorer 7 has restrictions on the size of the imported data. In Internet Explorer 7, an URL
cannot be more than 2083 characters in size. The string with data is truncated and a JavaScript error is
displayed if the URL and the imported data do not comply with the size restriction.

Duplicate Prevention Configuration 21

CHAPTER 5

IDC Controls

This chapter includes the following topics:
e Qverview, 22

e Clickable Path, 22

e Hierarchy Manager, 23

e History View, 24

e Duplicate Prevention, 24

Overview

This section describes the features and functionality of the built-in IDC controls and the ways in which they
might differ from their IDD counterparts.

Clickable Path

22

The amount of space available on the screen is more limited with IDC controls than with IDD applications.
Large dialog boxes in particular do not work well with the limited space. In IDC controls, large dialog boxes

are replaced with overlay panels that use the full control space and a clickable path in the title bar to navigate
back to the starting panel.

As an example, here is the main display of the Hierarchy Manager control.

Hierarchy View: KEN LEE [Search J [More Actions *]

2

-) (&
G e g
v KEN LEE £
s

k] S
4 7

[3) 1
i LEE Household Q RITA LEE

4]
=)

g MARY LEE

Navigation Layouts Filters Other

When the user selects an entity in the graph and chooses View Detail, a full panel overlay is used to display
the entity information. The title bar of this panel consists of a clickable path showing the title of the main
page and the current page. Clicking on the title of the main page returns to that view.

Hierarchy View: KEN LEE -LEE,KEN
KEN

LEE

MALE
K.EEM LEE

Hierarchy Manager

The Hierarchy Manager control provides functionality similar to the Hierarchy View in an IDD application. It
has been modified to provide capabilities that are appropriate for the context of an embedded control. When
the component is invoked, it displays the specified entity and directly related entities (one hop).

The following list describes differences between the Hierarchy View in IDD applications and the IDC
Hierarchy View:

Title bar - the IDC control does not include:

Add New Entity button - this control is for viewing and managing relationships. Entities must be added
in IDD.

Hierarchy Manager 23

Full Screen Mode checkbox - not needed.
More Actions menu - the IDC control does not include:
Show History — the Hierarchy History View is not included.
Show Bookmark — not needed.
Entity Actions - the IDC control does not include:
View / Cross References
Edit / Edit Entity
Edit / Delete Entity
Edit / Create Task
Find / Duplicates
Find / Merge Candidates

History View

The History View control provides the same features as the History View in IDD. The display layout is
rearranged to accommodate the more limited display space.

¢ In IDD applications, the history timeline displays at the top of the form with the point-in-time history view
of the subject area at the bottom of the form.

¢ InIDC controls, the Event and Entity Details are displayed in a full panel overlay, with a clickable path to
return to the timeline.

Duplicate Prevention

24

The goal of the Duplicate Prevention control is to bring the potential match capabilities currently available
within the IDD to business users, who create master data in external source system within enterprise
applications such as Salesforce.com, SAP, and Oracle ERP.

When a user creates a new record in the external source system, the component displays the potential
matches and provides the user with the following options:

* Navigate to the matched record, if it exists in source system.

o Ability to create a new record in the source system, if it exists in Hub but does not have an XREF for the
calling application.

This allows the business users to leverage the cleansed and correct data that may already exist in the MDM
server and prevent the creation of duplicate data at the external source.

The control is not intended to address the overall integration or synchronization requirements between the
external application and the Hub server. It is assumed that this is in place (batch and/or real-time).

Note: This control is designed to be application agnostic. There must be a dedicated connector for the
specific application that embeds the control.

Chapter 5: IDC Controls

The Duplicate Prevention control performs search for duplicates using search criteria passed in the control’s
URL. If matched records are found, it displays them in a view similar to the Potential Matches IDD dialog, as

shown:
|
|1 SAM DUNN
2 i
3 CLUNN
SAM
SAM DUNN
Telephones | Bill address Ship addresses
Swritch to Table Yiew

7851456
34

BUSINESS

Record 1 of 1

Note: Search criteria are passed to the Duplicate Prevention control as values of Hub match columns. To
perform search for duplicates, control uses the searchMatch APl with matchType=NONE. This matchType
option is intended for searching, and therefore does not use a predefined match rule set; instead a dynamic
rule set based on the match columns passed to the control is generated. Also, if base object is configured to
use a Fuzzy match/search strategy, then the searchMatch API requires the value of the fuzzy match key to be
specified.

If multiple matched records are found, then a user can navigate between them using the scrolling control to
the left. The following buttons are available for each matched:

Open

The Open button is intended to be used to open matched record in the application embedding the
control. This button is enabled if a matched record has an XREF record from the Source System that is
configured as target Source System for the Duplicate Prevention control.

Import

The Import button is intended to create new record, in the application embedding the control, by using

data of matched record found in Hub. This button is enabled if a matched record does not have an XREF
record from the Source System configured as target Source System for the Duplicate Prevention control.
If the import functionality is not needed, then control can be configured not to display the Import button.

RELATED TOPICS:

e “Import Configuration” on page 19

Messaging

You need to establish connectivity from a component embedded in iFrame to the embedding application, as
the embedded component contains action buttons that trigger some logic in the external application. The

Duplicate Prevention 25

connectivity is implemented as messaging by using the window.postMessage JavaScript function, which
allows cross-window or cross-domain messaging.

Messaging is supported by browsers such as Safari 4, Firefox 3, and Internet Explorer 8. To use messaging
for Internet Explorer 7, additional configuration steps are required. The Duplicate Prevention control sends
events to the embedding application by using postmessage plugin. Duplicate Prevention component sends
messages in a predefined format, which the embedding application needs to handle. Each messaging event
is a JavaScript object with an action field identifying the type of event.

The Duplicate Prevention component generates the following types of events:
ON_LOAD

The ON_LOAD event is generated when search for duplicates and rendering of the component is
completed. This event has a duplicatesFound field that provides an indication if matched records are
found.

ON_OPEN

The ON_OPEN event is generated when a user clicks the Open button. This event has an id field that
identifies selected matched records. It contains the value of the PKEY_SRC_OBJECT field of XREF record
from the target Source System (primary key value from the source system). Code handling this event can
use this id to find and open matched records in the embedding application.

ON_IMPORT

The ON_IMPORT event is generated when a user clicks the Import button. This event has a record field
that contains data of selected matched records serialized into the string in JSON format. Code handling
this event can use a record data to create new records in the embedding application.

The Duplicate Prevention control uses the idd pmc_event string as the postmessage type of event, and this
string should be used to register handler for events generated by the control.

The following is a sample HTML page embedding a Duplicate Prevention control that shows you how to
register a handler for events generated by the component:

<html>
<head>

<!-- include postmessage JavaScript plugin -->

<script type="text/javascript" src="http://postmessage.freebaseapps.com/
postmessage.js"></script>

<script type="text/javascript">

// function handling events
function handleEvent (data) {
switch(data.action) {
case 'ON LOAD':
// handle ON_LOAD event
break;
case 'ON IMPORT':
// handle ON_IMPORT event
break;
case 'ON OPEN':
// handle ON OPEN event
break;

}

// register function 'handleEvent' as handler for events generated by Duplicate
Prevention component

function bindHandler () {

pm.bind ("idd pmc_event", function(data) {
handleEvent (data) ;
1)

}

</script>

26 Chapter 5: IDC Controls

http://postmessage.freebaseapps.com/

</head>

<!-- register event handler from onload event -->
<body onload='bindHandler();'>
<!-- embed Duplicate Prevent component -->

<iframe src="http://<host>:<port>/bdd/bdc/<component name>/sa:<subject area>,<match
parameters>/proactive match/component.jsf></iframe>
</body>

</html>

RELATED TOPICS:

e “Import Configuration” on page 19

e “JavaScript Messaging in Internet Explorer 7" on page 21

Error Handling

Search for matched records is not performed in situations such as when a Duplicate Prevention component
is not active or a component is configured incorrectly.

If some error occurs during the initialization of Duplicate Prevention component or during the search for
duplicates, then the component displays a standard IDC error page with a detailed error message and does
not generate any event. It is recommended that you implement some user interface controls in the
application embedding Duplicate Prevention so that a user is able to cancel an operation or skip the
component screen in case of an unexpected error.

Duplicate Prevention 27

CHAPTER 6

Embedding Controls

This chapter includes the following topics:
e Overview, 28

e Loose Coupled Controls, 28

e Duplicate Prevention Control, 29

e Accessing IDC Components Bound to Different IDD Configurations, 35

Overview

At present IDC controls are loosely coupled with third-party application. The URL that invokes the control is
the only interface between the control and the third-party application. Embedding an IDC control in a third-
party application depends on the particular application.

Note: Embedding more than one IDC component in the same html page is not supported.

Loose Coupled Controls

28

The Hierarchy Manager and History IDC controls are loosely coupled with the third-party applications in which
they are embedded. The URL that invokes the control is the only interface between the control and the third-

party application. The control is unaware of the containing third-party application and does not communicate
with it.

The details of embedding an IDC control in a third-party application depend on the particular application. As

an example, here is a Salesforce.com VisualForce page for an Account that includes a Hierarchy Manager
control.

<apex:page standardController="Account" showHeader="true" tabStyle="account" >
<style>
.activeTab {background-color: #236FBD; color:white; background-image:none}
.inactiveTab { background-color: lightgrey; color:black; background-image:none}
</style>
<apex:tabPanel switchType="client" selectedTab="tabdetails"
id="AccountTabPanel" tabClass="activeTab"
inactiveTabClass="inactiveTab">
<apex:tab label="Details" name="AccDetails" id="tabdetails">
<apex:detail relatedList="false" title="true"/>

<apex:iframe
src="http://hostname:port/bdd/bdc/hmEn/sag:Party, systemName:SFA, sourceKey:

{!$CurrentPage.parameters.id}/hm/component.jsf"
height="500" scrolling="false"
id="siperianHM1"/>

<apex:relatedList subject="{'!account}" list="contacts" />

<apex:relatedList subject="{l!account}" list="opportunities" />

<apex:relatedList subject="{'!account}" list="OpenActivities" />

</apex:tab>
</apex:tabPanel>
</apex:page>

In this example, the http://hostname:port/bdd/bdc/hmEn/sag:Party, systemName:SFA, sourceKey: {!
$CurrentPage.parameters.id}/hm/component.jsf URL invokes the control. This URL uses the system name
and source key to invoke the control. The system name is a constant — SFA. The source key is dynamic - {!
SCurrentPage.parameters.id}. This is the VisualForce syntax used to substitute the ID for the current account.

Duplicate Prevention Control

The Duplicate Prevention IDC control is tightly coupled with the application in which it is embedded.

An external application must generate an URL invoking control by using record data entered by the user and
handle events generated by the Duplicate Prevention control. The code required to embed a Duplicate
Prevention control in the external application depends on this application. This section provides an example
of Duplicate Prevention control integration into the Salesforce.com application. You must be familiar with the
Salesforce platform, and understand the Visualforce Pages syntax and Apex Code.

Salesforce Scenario

In this scenario, an organization uses the Salesforce application to store information about customers.

The organization uses the Hub Server to maintain customer master data (data is synchronized with the Hub
Server through batch processes) but continues to use the Salesforce application to enter new customer
records. In this scenario, duplicate customer records can be created in the Salesforce application. The
potential matches or the duplicate prevention capabilities available in IDD need to be extended to the
Salesforce application, to detect duplicate data at the time of new record entry.

Requirements

The embedded Duplicate Prevention control must ensure that duplication of records is not allowed.

The implemented solution must help a business user to avoid creating duplicate customer records. When a
user tries to save a new record, search for duplicate records already existing in the Hub Server must be
executed. If no match is found, then the new record is saved. Otherwise, the matched records are displayed
to the user. The following options must be available to the user:

¢ |f a matched record found in the Hub Server exists in the Salesforce application, then a user should be
able to open it.

¢ |f a matched record found in the Hub Server does not exist in the Salesforce application, then a user
should be able to create a new record using the data of the matched record.

¢ If an analysis of potentially matched records proves that the records are not duplicates, then a user
should be able to save the new record.

e |f an error occurs during the search for duplicate records, then a user should be able to save the new
record or cancel the save.

Duplicate Prevention Control 29

30

Implementation

The following prerequisites are assumed for integration of Duplicate Prevention control into the Salesforce
applications:

Customer data is stored in the Salesforce application as a standard Salesforce object, Contact.

Data from the Salesforce application is loaded into the Hub Server. Source System for the data from
Salesforce is named SFDC and the internal field Contact.id, which are used to uniquely identify Salesforce
objects mapped as PKEY_SRC_OBJECT column in the Hub. The Hub Server base object that stores
customer records is named C_CUSTOMER.

The C_CUSTOMER base object is configured to use a fuzzy match/merge strategy. It has a match column
named Customer_Name, with type Person_Name, which is a Fuzzy Match Key. This match column is used
to find matches on full names of people. For more information, see the section on configuring the match
process in the Multidomain MDM Configuration Guide.

The IDD application is configured and deployed. SubjectArea that uses C_CCUSTOMER base object for its
PrimaryObject is named Customer.

An instance of Duplicate Prevention IDC control is created as part of the IDD application, with the name
dp.

Firstly, control should be configured to use the Source System, SFDC, that was used to load data from
Salesforce as the target system. Also, assume that for importing records from the Hub Server, we need
values of PrimaryObject columns, FIRST_NAME and LAST_NAME only. During the import into Salesforce
these columns are mapped to the corresponding columns of Contact object. The following configuration file,
pmc-config.xml, must be uploaded to configure the control:

<?xml version="1.0" encoding="UTF-8"?>
<pmcConfig xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="siperian-bdd-config-6.xsd"
systemName="SFDC">
<mdmEntity name="Customer" sourceEntity=" Customer">

<columnMapping columnUid=" C_CUSTOMER |FIRST NAME" sourceColumn="FirstName"/>
<columnMapping columnUid=" C_CUSTOMER |LAST NAME" sourceColumn="LastName"/>
</mdmEntity>

</pmcConfig>

On the Salesforce side, the standard process of new contact creation should be overridden to use Duplicate
Prevention capabilities. In this example a two-step wizard is used instead of the default, new Contact page:

1.

User enters new Contact data and clicks Save.

Na recards o display Firsttiame Lasttame o |
g Recycle Bin Save Cancel

The user is redirected to the second page, which contains Duplicate Prevention control displaying the
potential matches found.

Chapter 6: Embedding Controls

2. User can use this page to handle events generated by the control and if the control notifies the page that
no matched records are found, then the new Contact is automatically saved. Otherwise, the user can
open or import the found matched records, proceed with saving the new Contact or cancel the save

operation:
:i_‘. SAM DURN First Hame SAM Last Hame DUM
|
|‘ 1 Display Name: SAM DUNN Birthdate:
Recycle Bin
e 2 | name prefix cd: Generation Suffix Cdi %
3 | Last Name: DUMN
Preferred Phone: Gender Cd:
Tax ID: First Name: sAM
Middle Mame: Display Name: SAM DUNN

Tax ID:

Telephanes || Bill address || ship sddresses

[Switch to Form Yiew] [Customize Takle]

Fhone Country Cd ¢ Phons Humbsr & Phone Ext Number ¢ Is Valid Ind ¢ Fhone Type &

Note: This approach to integrate Duplicate Prevention control into the Salesforce application is used only to
demonstrate some aspect of work with the control. You can use other strategies for integration with
Salesforce.

To implement this wizard, you must define two pages and a custom controller that keeps data entered by the
user, coordinates navigation between pages, and handles Open and Import actions.

The following is a sample Apex code for the controller (which extends the standard Contact controller):

public class duplicatePreventionWizardController {

/*

field keeps id of the selected matched record, (field is set by JavaScript code
handling ON_OPEN event)

*/

private String matchedRecordId;

/*

next two fields keep values of FIRST NAME and LAST NAME fields of the imported
matched record

(fields are set by JavaScript code handling ON OPEN event)

*/

private String importedFirstName;

private String importedLastName;

// reference to the standard Contact controller
private ApexPages.StandardController stdController;

public duplicatePreventionWizardController (ApexPages.StandardController
stdController) {
this.stdController = stdController;
}

// returns reference to the first wizard's page, used to control navigation
public PageReference returnToEdit () {

return Page.NewContact Stepl;
}

// returns reference to the second wizard's page, used to control navigation
pag 9

Duplicate Prevention Control 31

public PageReference searchForDuplicates() {
return Page.NewContact Step2;

}

// generate search criteria string needed to build URL invoking Duplicate Prevention
control

public String getMatchParametersString() {
// get data entered by user

Contact contact = (Contact)stdController.getRecord();

String firstname = contact.FirstName != null ? contact.FirstName : '';
String lastname = contact.LastName != null ? contact.LastName : '';

// construct full name used for matching as FirstName + LastName
String fullName = firstname + ' ' + lastname;

// values of IDC parameters should be double encoded

fullName = doubleEncode (fullName) ;

// search criteria should be passed in format 'mc.<match column name>:<match
column value>' (Customer Name is name of match column configured in Hub)

String matchParameters = 'mc.Customer Name:' + fullName;

return matchParameters;

}

// function implements double encoding for IDC parameters
private String doubleEncode (String str) {
return EncodingUtil.urlEncode (EncodingUtil.urlEncode (str, 'UTF-8'),
'UTF-8");
}

// open selected matched record
public PageReference openMatch() {
try {
// try to find Contact using id passed in ON OPEN event and redirect to the
Contact view page
Contact matchedContact = [select id from Contact where id
= :matchedRecordId];
PageReference matchViewPage = new
ApexPages.StandardController (matchedContact) .view();
matchViewPage.setRedirect (true);
return matchViewPage;
} catch (Exception e) {
ApexPages.Message message = new ApexPages.Message (ApexPages.Severity.FATAL,
'Failed to load object with id ' + matchedRecordId);
ApexPages.addMessage (message) ;
return null;

}

// import selected matched record
public PageReference importObject () {
try {
// try to create Contact using data passed in ON_IMPORT event and redirect
to the Contact view page
Contact importedContact = new Contact (FirstName = importedFirstName,
LastName = importedLastName);
insert importedContact;
PageReference importedViewPage = new
ApexPages.StandardController (importedContact) .view();
importedViewPage.setRedirect (true);
return importedvViewPage;
} catch (Exception e) {
ApexPages.Message message = new ApexPages.Message (ApexPages.Severity.FATAL,
'Failed to save object');
ApexPages.addMessage (message) ;
return null;
}
}

// getters and setters required to access controller's attributes using <apex:param>
tag

public String getMatchedRecordId() {
return matchedRecordId;

32 Chapter 6: Embedding Controls

}

public void setMatchedRecordId(String matchedRecordId) {
this.matchedRecordId = matchedRecordId;

}

public void setImportedFirstName (String value) {
importedFirstName = value;

}

public String getImportedFirstName () {
return importedFirstName;
}

public void setImportedLastName (String value) {
importedLastName = value;

}

public String getImportedLastName () {
return importedLastName;

}
}

The following code defines the first wizard page and contains input fields required to enter new Contact

record. To simplify the example, only fields required to perform search for duplicates (contact's first name

and last name) are used.

<!-- page NewContact Stepl (uses custom duplicatePreventionWizardController) -->

<apex:page standardController="Contact" extensions="duplicatePreventionWizardController">

<apex:form >
<apex:pageBlock >
<apex:pageBlockButtons >

<!-- Save button invokes 'searchForDuplicates' action, it redirects user to

the second page -->
<apex:commandButton action="{!searchForDuplicates}" value="Save"/>

<!-- Cancel button invokes standard 'cancel' action -->

<apex:commandButton action="{!cancel}" value="Cancel" immediate="true"/>
</apex:pageBlockButtons>
<!-- fields to input Contact FirstName ane LastName -->
<apex:pageBlockSection title="Contact Information">

<apex:inputField value="{!contact.firstName}"/>

<apex:inputField value="{!contact.lastName}"/>

</apex:pageBlockSection>
</apex:pageBlock>
</apex:form>
</apex:page>

The following code defines the second wizard page. It displays the Contact data entered by the user in read-

only view and the found potential duplicates. This page has two additional buttons:
Skip

Skips this page and proceeds with save.
Cancel

Returns to the first page.

The URL invoking duplicate prevention control is generated dynamically using Contact data entered by user.

The JavaScript code handling Duplicate Prevention events extracts data passed in events and invokes
corresponding actions defined in the controller:

<!-- page NewContact Step2 (uses custom duplicatePreventionWizardController) -->

<apex:page standardController="Contact" extensions="duplicatePreventionWizardController">

<!-- include postmessage JavaScript plugin -->
<script type="text/javascript" src="http://postmessage.freebaseapps.com/
postmessage.js"></script>

Duplicate Prevention Control

33

<apex:form id="mainForm">
<!-- panel displaying error messages -->
<apex:outputPanel id="messages">
<apex:messages style="font-weight:bold; color:red;"/>
</apex:outputPanel>

<script>
// function handles events generated by Duplicate Prevention control
function handleEvent (data) {

switch(data['action']) {

case 'ON_LOAD':

if (data['duplicatesFound'] == 'false') {
// if duplicates are not found proceed with save
continueSave();

}

break;

case 'ON OPEN':
// try to find and open Contact using id passed in event
openMatchedRecord (data['id']);
break;

case 'ON_IMPORT':
// convert JSON string passed in event into JavaScript object
var record = eval('(' + data['record'] + ")');
// try to save and open Contact using data from Hub passed in event
importObject (record.Customer.FirstName, record.Customer.LastName);
break;

}

// register function handleEvent as handler for Duplicate Prevention events
function bindHandler () {
pm.bind("idd pmc event", function(data) {
handleEvent (data) ;
1)
}

bindHandler () ;
</script>

<!-- JavaScript functions invoking methods defined in controller, used by code
handling events -->

<apex:actionFunction name="openMatchedRecord" action="{!openMatch}"
reRender="messages">
<apex:param name="matchedRecordId" assignTo="{!matchedRecordId}" value=""/>
</apex:actionFunction>

<apex:actionFunction name="importObject" action="{!importObject}"
reRender="messages">
<apex:param name="firstName" assignTo="{!importedFirstName}" value=""/>
<apex:param name="lastName" assignTo="{!importedLastName}" value=""/>
</apex:actionFunction>

<apex:actionFunction name="continueSave" action="{!save}" reRender="mainForm"/>

<apex:pageBlock id="mainPanel">
<apex:pageBlockButtons >

<!-- Skip button invokes standard save action -->
<apex:commandButton action="{!save}" value="Skip" immediate="true"/>
<!-- Cancel button redirects user to the first page -->
<apex:commandButton action="{!returnToEdit}" value="Cancel"

immediate="true"/>
</apex:pageBlockButtons>

<apex:pageBlockSection title="Contact Information">
<apex:outputField value="{!contact.firstName}"/>
<apex:outputField value="{!contact.lastName}"/>
</apex:pageBlockSection>

<!-- TIFRAME embedding Duplicate Prevention control, URL is constructed using
string generated by controller -->

Chapter 6: Embedding Controls

<iframe src="http://host:port/bdd/bdc/dp/sa:Customer, { !matchParametersString}/
proactive match/component.jsf" style="width:100%;height:500px"></iframe>

</apex:pageBlock>

</apex:form>

</apex:page>
To enable JavaScript messaging in Internet Explorer 7, Duplicate Prevention control requires the parentUrl
parameter. You must pass the value of this parameter to the Duplicate Prevention control. To achieve this
code of NewContact_Step2 page, embedding component using HTML tag <iframe> can be changed for
Internet Explorer 7 to dynamically detect current URL and insert it as a parameter into the URL invoking the
control as shown:

<!-- IFRAME embedding Duplicate Prevention control, URL is constructed using string
generated by controller and dynamically detected URL of the current page-->
<script>

var parentUrl = encodeURIComponent (encodeURIComponent (document.location.href));
var url = 'http://host:port/bdd/bdc/dp/sa:Customer,' + '{!matchParametersString}' +
',parentUrl:' + parentUrl + '/proactive match/component.jsf';
document.writeln('<iframe src="' + url + '" style="width:100%;height:500px"></iframe>");
</scrip>

To configure Salesforce to use the implemented wizard for new Contact creation:

1. Navigate to Setup > Customize > Contacts > Button > Links.

2. Click the Edit link for the New action.

3. Select the first wizard's page, NewContact_Step1 to override the value of the URL.

RELATED ToOPICS:

e “JavaScript Messaging in Internet Explorer 7" on page 21

Accessing IDC Components Bound to Different IDD
Configurations

You cannot access more than one IDC component bound to different IDD configurations from the same
browser session.

Typically, different browser windows create different sessions, while different browser tabs may share the
same session. This behavior depends on the browser configuration. If you need to simultaneously access
IDC components that are bound to different IDD applications, then you must access them from different
browser sessions.

Accessing IDC Components Bound to Different IDD Configurations 35

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: IDC Concepts
	Usage of IDD
	IDC Control Type
	IDC Control
	Levels of Integration

	Chapter 2: Implementation Process
	Overview
	Before You Begin
	Configuration Process
	Step 1. Build, Deploy, and Test the IDD Application
	Step 2. Create the IDC Control
	Step 3. Configure IDC Control Overrides
	Step 4. Test the IDC Control in a Browser
	Step 5. Embed the IDC Control in a Third-party Application

	Chapter 3: Configuring Controls in the IDD Configuration Manager
	Creating a Control
	Format of the Control URL
	Localization
	User Authentication and Password Encryption

	Chapter 4: IDC Control Overrides
	Overview
	XML Files and Root Elements
	Steps to Override IDC Controls
	Using XML Tools to Configure Configuration XML Files
	Layout Overrides
	Adding Custom Actions
	Adding User Exits
	Properties
	Duplicate Prevention Configuration
	System Name
	Import Configuration
	JavaScript Messaging in Internet Explorer 7

	Chapter 5: IDC Controls
	Overview
	Clickable Path
	Hierarchy Manager
	History View
	Duplicate Prevention
	Messaging
	Error Handling

	Chapter 6: Embedding Controls
	Overview
	Loose Coupled Controls
	Duplicate Prevention Control
	Salesforce Scenario
	Requirements
	Implementation

	Accessing IDC Components Bound to Different IDD Configurations

